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ABSTRACT

PSYCHOPHYSICAL METHODS FOR ENHANCING IMMERSIVE GRAPHICS

SYSTEMS

by

Budmonde Duinkharjav

Advisor: Prof. Qi Sun, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2025

Insights into how humans perceive and react to their visual surroundings have driven

advancements in computer graphics, improving the efficiency and fidelity of display

and rendering technologies. Computational models that capture the capabilities, limita-

tions, and nuances of human vision have revealed numerous optimization strategies

that enhance system performance without perceptible degradation in user experi-

ence. The emergence of applications with complex computational capabilities and

human interaction-aware technologiesÐsuch as XR, assisted driving, video games, and
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esportsÐhas not only introduced new opportunities for optimizing graphics but also for

enhancing human performance, productivity, and safety beyond conventional limits.

In this PhD dissertation, we investigate various aspects of the human visual system

and develop computational models and algorithms that complement perceptual and

behavioral constraints to enhance user experience. We explore topics such as leverag-

ing color encoding limitations to optimize display output, identifying and correcting

inaccuracies in motion perception, and measuring human decision-making and motor

control latency to assess the temporal effects of displayed imagery.

Through this work, we demonstrate how psychophysical methodologies, originally

designed to study human perception and behavior, can be applied to understanding

human-computer joint systems. By addressing inefficiencies, bottlenecks, and inaccu-

racies within this system, we show how computers can be improved to reduce power

consumption, computation, and bandwidth, while human users can be enhanced in

speed and accuracy.
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Chapter 1

Introduction

Immersive graphics systems rely on an accurate understanding of human perception

and behavior to ensure a high-fidelity experience, and serve as an effective intermediary

between computer systems and users, facilitating seamless information exchange. There-

fore, new technological advancements in display and rendering pipelines often trigger

research into the boundaries of human interaction with the imagery and downstream

applications enabled by these advancements. Moreover, research into how humans

perceive and react within these new paradigms has also led to new understandings

of human vision and cognition. Additionally, it prompts consideration of whether we

can move past merely optimizing graphics systems for their own performance toward

designing systems that also enhance human performance beyond typical capabilities.

The field of perceptual graphics encompasses research aimed at integrating the

latest findings in human perception and vision science into state-of-the-art display and

rendering technologies, and thus, plays a pivotal role in addressing these inquiries. As

a crucial linchpin, this field also drives further research in both areas by addressing

technological gaps on the computer systems side as well as scientific gaps in human
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perception. The emergence of newly available display technologies such as virtu-

al/augmented reality (VR/AR), advanced rendering techniques like neural radiance fields

(NeRFs) and 3D Gaussian Splatting, and proliferation of new application domainsÐfrom

video games and esports to remote and assisted vehicle drivingÐunderscores the need

for detailed analysis through the lens of human perception and cognition. Hence, there

is a pressing need for research aimed at understanding the perceptual factors relevant

within state-of-the-art immersive graphics pipelines.

Our research aims is to utilize methods for measuring and understanding aspects of

human perception and behavior relevant to these emerging technologies. We seek to

apply these insights to enhance the performance of underlying computer systems, and

conversely, improve human performance in interactive tasks beyond typical capabilities

outside of the immersive graphics systems. To this end, this dissertation presents

methods that leverage psychophysics, an essential tool in psychology and neuroscience,

to design and implement computer systems that advance both fields. Our approach

relies on identifying and measuring features and limitations of human perception, and

utilize our findings to develop computational frameworks integrated into downstream

applications. These frameworks aim to minimize the impact of system limitations

experienced by users and enhance users’ ability to navigate and interact effectively

within immersive virtual environments.

Throughout this dissertation, we focus on how the brain processes visual signals,

explore the underlying neural circuitry and scientific understanding of its end-to-end

functions in human perception and behavior, and ultimately propose methods for holisti-

cally improving the efficiency of human-computer systems. Just as optimizing computer

system pipelines requires tracing critical pathways of information transmission, we

take a similar approach in this work. In the following chapters, we provide an overview
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of the human visual pathway, examining how neural signals are transmitted through-

out the brain. We identify areas where the accuracy and latency of these signals can

be enhanced, as well as where inherent bandwidth limitations can be leveraged for

system-side optimizations.

Specifically, in Chapter 3, we first examine how the conversion of light signals

within the retina and their subsequent transmission to the brain exhibit bandwidth

limitationsÐand how these limitations can be exploited to optimize computer systems.

By accounting for constraints in neural signal transmission, we minimize the generation

of visual information that would otherwise be discarded along the visual pathway,

leading to more efficient system design.

In Chapter 4, we continue exploring the visual information transmission pathway,

investigating how the visual system integrates multiple sources of low-level information

to construct a comprehensive understanding of 3D environments. We also examine

how different display conditions degrade perception and discuss potential strategies

to mitigate these effects. In Chapter 5, we analyze the mechanics of decision-making,

exploring how our perception of displayed imagery affects reaction times and how

optimizing content appearance can enhance human performance. Finally, in Chapter 6,

we examine how eye movement decisions are executed via control signals transmitted

back to the eyes. The accuracy and efficiency of eye movement control influence

how different scene layouts affect our ability to quickly scan our visual surroundings,

as well as the costs associated with visually interacting with virtual environments.

Across these chapters, we illustrate the application of computational frameworks for

improving performance in various contexts, including VR/AR headsets and 2D display

environments, demonstrating their practical utility.
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Chapter 2

Background Literature

In this chapter, we review the relevant literature and establish the mathematical and

computational frameworks that underpin this work. We begin by surveying prior

research in computer graphics that incorporates human perceptual and behavioral

factors. Next, we introduce the psychophysical framework for studying human per-

ception and behavior, which informs the modeling approaches discussed throughout

this manuscript. Finally, we provide an overview of the human visual system, covering

existing psychophysical models aimed at understanding various aspects of visual in-

formation processing, along with key neural and physiological evidence that support

these models.

2.1 Immersive Graphics Systems

This section reviews existing literature on how computer graphics systems incorporate

human perception and behavior, how the constraints of both humans and computers

influence hardware and graphics system design, and how human behaviors create

opportunities for optimization and enhancement in human-computer interaction.
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2.1.1 Human Vision-Aware Display Systems

Display systems leverage the limitations of human vision to bridge the gap between

natural and displayed visual content in terms of fidelity and realism. For instance, as

display resolution surpasses the perceptual resolution limit, we lose the ability to discern

whether a visual target is a cohesive object or a collection of individual pixels depicting

it [Campbell and Robson, 1968]. Since the primary goal of display systems is to present

visual content to human users, their specifications (e.g., resolution, luminance, color

gamut) are determined by both the constraints of display hardware and the limitations

of human vision.

The spatial resolution at the center of human vision is approximately 120 pixels-per-

degree (ppd) [Campbell and Robson, 1968], meaning that the display resolution required

to match human limits varies depending on the viewing angle of the display, a.k.a.,

field-of-view (fov). While high-end TVs provide sufficient resolution for eye-display

distances (which affect the fov) of ≥ 1.5 m1, state-of-the-art AR/VR displays, with

resolutions of up to 51 ppd2, have yet to reach the limits of human vision.

Other aspects of display system capabilities are still short of human vision limits.

Human eyes can adapt to luminance levels ranging from 10−6 to 106 nits, spanning

approximately 12 log units [Wang and Zhao, 2022], while preserving a static contrast

sensitivity of around 1 : 100 across the whole luminance range [Barten, 1999a]. However,

state-of-the-art high dynamic range display systems only reach up to 4000 nits 3 while

maintaining minimum contrast sensitivity across all adaptation levels. Similarly, human

color vision, as specified by the CIE 1931 colorimetric standards [Smith and Guild, 1931]

1Estimated based on the 117 pixels-per-inch resolution reported by Samsung (https://www.samsung.
com/africa_en/tvs/tv-buying-guide/what-is-8k-tv/)

2https://varjo.com/products/xr-4/
3https://www.lgcorp.com/media/release/28575

https://www.samsung.com/africa_en/tvs/tv-buying-guide/what-is-8k-tv/
https://www.samsung.com/africa_en/tvs/tv-buying-guide/what-is-8k-tv/
https://varjo.com/products/xr-4/
https://www.lgcorp.com/media/release/28575
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(further details in Section 2.3.2), exceeds the color gamuts of any state-of-the-art display

systems available today [Chen et al., 2017]. Moreover, emerging display technologies,

particularly in AR displays, introduce new challenges in color generation, such as color

blending and color alignment [Hassani and Murdoch, 2016; Murdoch et al., 2015; Zhang

et al., 2021a].

Beyond the physical constraints of display hardware, additional computational re-

quirements further limit the visual fidelity of displayed content. The graphics rendering

pipeline demands substantial computation to operate in real time. In fact, research on

user preferences in low-latency demanding applications, such as competitive video

games, has shown that task-crucial visual factors like latency often dictate the required

graphics settings [Claypool et al., 2006]. Maintaining such performance requirements

consistently necessitates high computational power and significant energy consumption.

These constraints pose challenges for mobile displays, as achieving high computational

performance and power storage becomes increasingly difficult within the form factors

required for such devices. As a result, energy- and compute-aware methods for display-

ing content have gained interest in the literature, focusing on reducing the rendering

power of graphics algorithms [Debattista et al., 2018; Wang et al., 2016; Zhang et al.,

2018, 2021b], exploring the relationship between display power, luminance and color in

mobile computing [Dash and Hu, 2021; Dong et al., 2009; Dong and Zhong, 2011; Shye

et al., 2009], analyzing the effects of display luminance on human vision [Shye et al.,

2009; Yan et al., 2018], and investigating the impacts of hardware design optimizations

on display power consumption [Boroson et al., 2009; Miller et al., 2007, 2008, 2006; Shin

et al., 2013].

A common theme across research on display power reduction is the quantification

of power savings per unit change in display luminance [Shye et al., 2009], chrominance,
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and hue [Dash and Hu, 2021; Dong et al., 2009; Dong and Zhong, 2011]. Studies have

proposed measuring changes in display characteristics in terms of human physiological

[Shye et al., 2009] and perceptual responses [Mantiuk et al., 2021, 2024] (further details

in Section 2.2.1). Perceptually driven power-saving strategies have influenced display

hardware design, leading to the integration of color-transformation functions into

hardware [Shin et al., 2013] and even the introduction of four-color OLED structures

[Miller et al., 2007, 2008].

Ultimately, the design objectives, constraints, and methodologies that shape display

systems are driven by human visual perceptionÐwhat the observer can and cannot

seeÐhow displayed content influences perception, and how users interact with digital

content efficiently and effectively.

2.1.2 Gaze-Contingent Computer Graphics

In Section 2.1.1, we discussed how display systems are designed to accommodate

limitations of the human visual system. However, the perceptual requirements we

outlined do not fully capture the complexities of human vision. Vision ismost sensitive at

the center of the visual field, a.k.a., the fovea, and degrades toward the periphery (further

details in Section 2.3.1). Examples of limitations include reduced spatial resolution in

peripheral vision [Watson, 2014], diminished color perception [Cohen et al., 2020], and

reduced sensitivity to flicker [Tyler, 1987]. Unfortunately, traditional display systems

are unable to leverage these characteristics and must instead optimize the entire display

as if every region were subject to foveal scrutiny.

Gaze-contingent computer graphics methods seek to exploit this overlooked aspect

of human vision by incorporating high-speed eye tracking to determine the user’s gaze

location and using this information to optimize graphics algorithms and display systems.
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One of the most significant optimizations enabled by eye tracking is gaze-contingent

rendering. These methods dynamically adjust rendering algorithms to enhance the

perceived realism of displayed content, improving effects such as parallax [Konrad et al.,

2020], ocular and stereo depth perception [Krajancich et al., 2020; Sun et al., 2020], depth

of field [Duchowski et al., 2014; Hillaire et al., 2008; Mauderer et al., 2014]. By leveraging

the perceptual differences between foveal and peripheral vision, these approaches

also enhance interactive computer graphics techniques, forming the foundation for

gaze-contingent foveated rendering and display systems.

Early implementations of foveated methods relied on reducing the sampling rate of

pixels in the peripheral visual field to decrease computational bandwidth and rendering

latency [Guenter et al., 2012; Meng et al., 2018; Patney et al., 2016]. Further research has

demonstrated that image statistics [Kaplanyan et al., 2019; Tursun et al., 2019; Walton

et al., 2021], temporal frame re-use [Franke et al., 2021], dynamic level-of-detail [Chen

et al., 2022], and variable shading rates [Denes et al., 2020; Jindal et al., 2021] can further

refine foveated rendering. The same fundamental concept has also been applied to

develop foveated path tracing [Koskela et al., 2019, 2016; Polychronakis et al., 2021;

Weier et al., 2016], light field displays [Sun et al., 2017], neural rendering [Deng et al.,

2022], and gaussian splatting [Lin et al., 2025].

In summary, the integration of eye-tracking technology into immersive display

systems and graphics methods has unlocked a wealth of technological optimizations

and enhancements to the user experience.

2.1.3 Behavior-Aware Computer Graphics

The use of eye tracking in immersive computer graphics applications represents only

the beginning of how graphics systems can be adapted to user needs, with significant
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untapped potential for enhancing applications to complement the limitations of human

perception and behavior. Recent research has shown that a deeper understanding of

these limitations can lead to more user-friendly and perceptually optimized graphics

applications, significantly enriching this field.

For example, insights into human eye movement behaviors have enabled the de-

velopment of predictive foveation techniques that anticipate gaze shifts to optimize

rendering performance [Arabadzhiyska et al., 2017; Kwak et al., 2024]. Incorporat-

ing research on multimodal stimulus integration into graphics applications has led to

novel approaches, such as manipulating users’ spatial perception of their surroundings

[Bernal-Berdun et al., 2024] and accelerating human reaction times [Jiménez Navarro

et al., 2024; Peng et al., 2024]. Studies on behavioral correlates of cyber-sickness [Tovar

et al., 2024] and its mitigation [Hu et al., 2019; Park et al., 2022], along with research into

the perceptual requirements for gaze-contingent distortion correction [Guan et al., 2022]

and world-locked rendering [Guan et al., 2023; Lutwak et al., 2023], further highlight

the challenges of bridging the gap between immersive display systems such as AR/VR

and real-world perception.

Additionally, research on the effects of different display systems on human percep-

tion and behavior has helped refine their applications for specific tasks. In particular,

scene layout, depth perception, and motion understanding within immersive virtual

environments are influenced by a combination of visual [Didyk et al., 2011; Lutwak

et al., 2022; Murray, 1994] and non-visual cues, such as vestibular input [DeAngelis

and Angelaki, 2012]. These findings suggest that for tasks requiring accurate depth

and motion estimation, immersive display systems such as AR/VR can enhance human

perceptual performance [Xie et al., 2020a; Xing and Saunders, 2022]. Studies on how

gaze behavior changes in AR/VR environments have also provided valuable insights for
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improving the design of these hardware systems [Aizenman et al., 2022; Shi et al., 2022].

Ultimately, a major research goal in advancing computer graphics algorithms and

display systems is to align them more closely with human perception and behavior,

ensuring they better serve the users for whom they are designed.

2.2 Psychophysical Methods

Psychophysics is the scientific discipline concerned with quantitatively examining the

relationship between physical stimuli and the sensations and perceptions they elicit.

In the context of vision, when we observe a visual stimulus, the physical signal is first

detected by photoreceptors in the retina and subsequently transmitted through various

neural pathways to the brain, where it gives rise to sensory experiences and perceptual

judgments. As we will discuss in Section 2.3, while physiological experiments provide

insight into the structure and function of these neural pathways, psychophysics is

primarily concerned with drawing end-to-end inferences about how physical stimuli

influence perception and behavior [Bruce et al., 2014].

Throughout this dissertation, we employ a range of psychophysical techniques in

experimental design, numerical analysis, and computational modeling. This section

provides essential background on thesemethods, as well as a review of relevant literature

that informs the research presented in this work.

2.2.1 Perceptual Discrimination

The Psychometric Function. When investigating how humans perceive physical

stimuli and what internal representations underlie perceptual judgments, simple per-

ceptual discrimination tasks provide valuable insights [Hautus et al., 2021, Chapter 1].
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Figure 2.1: Psychophysics measures. (a) Hypothetical proportion łpresentž responses are plotted

as scatter points in a solid disk detection task. A cumulative Gaussian psychometric function is

fitted to the data, with the point of subjective equivalence (PSE) and just-noticeable difference (jnd)

values annotated. (b) The Signal Detection Theory (SDT) decision variable and its relationship

to psychophysical responses are illustrated. The decision variable associated with stimulus,

(1, is randomly sampled from its probability distribution. Depending on the location of the

response criterion, the sampled value results in either a correct (shaded green), or incorrect

(shaded red) response. Stimulus (2 is sampled in the same manner (results not visualized). The

distance between the means of the decision variable distributions for the stimuli represents the

sensitivity, 3 ′, in discriminating between them.

For example, consider an experiment designed to measure the visibility of a solid gray

disk presented against a solid gray background of lower luminance (measured in nits).

By repeatedly asking subjects whether they perceived the disk on each trial, and system-

atically varying the disk luminance across different levels, we can record the proportion

of łpresentž responses at each stimulus luminance level, G . Plotting these response

proportions as a function of stimulus luminance yields the psychometric function, as

illustrated in Figure 2.1a [Hautus et al., 2021, Chapter 4].

The psychometric function aims to quantitatively describe how perception transi-

tions between two perceptual statesÐspecifically, from being unable to detect a stimulus

to reliably detecting it. For most perceptual tasks, the psychometric function exhibits a

characteristic sigmoidal shape [Woodworth and Schlosberg, 1954]. Accordingly, analy-

ses of psychometric functions typically focus on two key attributes: the intercept and
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the slope [Luce et al., 1963].

The intercept, known as the point of subjective equivalence (PSE), corresponds to the

stimulus level G?B4 at which the subject reports detecting the stimulus 50% of the time,

that is ? (G?B4) = 0.5. The slope is typically quantified as half the difference in stimulus

levels between the 25th and 75th percentile response rates, and is referred to as the

just-noticeable difference (jnd) [Hautus et al., 2021; Luce et al., 1963].

When quantifying perceptual thresholds, the PSE is often used because it is reflects

the stimulus level at which the subject has an equal probability of reporting the stimulus

as present or absent. In the case of the gray disk detection task, the PSE represents the

minimum disk luminance at which the observer has a 50% chance of detecting the disk.

The jnd, on the other hand, reflects the increment in luminance required to increase the

observer’s detection probability from 50% to 75%.

Empirically measured psychometric functions are typically modeled using ana-

lytic fits based on well-known cumulative distribution functions [Hautus et al., 2021;

Wichmann and Hill, 2001]. One common model is the cumulative normal distribution:

? (G) = Φ(G) =
∫ G

−∞

1√
2𝜋𝜎

exp

[
−1
2

(G − `
𝜎

)2]
3G, (2.1)

which is used throughout this work. Alternatively, psychometric functions are also

frequently modeled using the logistic cumulative distribution or theWeibull distribution

(formulations omitted here for brevity; see Hautus et al. [2021, Chapter 11] for details). In

the case of the cumulative normal model, the PSE corresponds directly to the distribution

mean, `, while the jnd is proportional to the standard deviation, specifically 0.675 × 𝜎 .

The PSE for normal distribution models is equivalent to the distribution mean, `, while

the jnd equals a fraction of the standard deviation, 0.675 × 𝜎 .
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Additionally, depending on the experimental protocol, psychometric functions are

often adjusted to account for a non-zero guess rate, denoted as 𝛾 [Wichmann and Hill,

2001]. This adjustment reflects the probability of a correct response due to chance,

independent of the perceptual signal. The resulting observed psychometric function is

defined as:

?𝑜𝑏B (G) = 𝛾 + (1 − 𝛾) ? (G) . (2.2)

For example, in two-alternative forced-choice (2AFC) experiments, the task is to determine

the order of two stimuli, such as ⟨(1, (2⟩ or ⟨(2, (1⟩. In this case, the chance-level

performance corresponds to 𝛾 = 0.5, reflecting the 50% probability of a correct response

when guessing [McKee et al., 1985].

Adaptive Threshold Measurement. In practice, however, determining the entire

psychometric function through repeated trials across numerous stimulus levels is often

impractical and time-consuming. For many applications, as we will see throughout this

dissertation, it is sufficient to estimate the stimulus level corresponding to a specific

performance threshold. To this end, adaptive threshold methods are commonly em-

ployed to reduce both the number of stimulus levels and the number of trial repetitions

required for threshold estimation. Broadly, adaptive threshold measurement methods

refer to a family of protocols in which the stimulus level of each trial is determined

based on the responses of previous trials [Hautus et al., 2021, Chapter 11].

One of the simplest and most widely used of these protocols is the up-down trans-

formed-response (UDTR), a.k.a., the adaptive staircase method [Wetherill and Levitt,

1965]. In this method, the sequence of prior responses is compared to a predefined

rule to adjust the stimulus level. For instance, a 1-up-2-down protocol increases the
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stimulus level after every incorrect response and decreases is after two consecutive

correct responses. At steady state, the probability of increasing and decreasing the

stimulus level equilibrates to 0.5. This behavior corresponds to a target task performance

of ? =

√
0.5 ≈ 0.71, since two consecutive correct responses occur with probability

?2 = 0.5. See Figure 3.1b for an example of such an adaptive staircase sequence.

Similar protocols, such as 1-up-3-down and 1-up-4-down, target higher performance

thresholds of ? ≈ 0.79 and ? ≈ 0.84, respectively. Beyond UDTR methods, more

sophisticated adaptive procedures leverage maximum likelihood estimation to refine

threshold estimates, such as PEST [Taylor et al., 1967] and QUEST [Watson and Pelli,

1983].

Parameters such as step size schedule, termination criteria, and threshold deter-

mination strategies differ across methods. In the experiments presented throughout

this dissertation, step sizes were held constant within each experiment, termination

criteria were based on a fixed number of reversals, and thresholds were determined

by averaging the stimulus levels at reversal points. For a comprehensive overview of

adaptive threshold measurement methods, see Hautus et al. [2021, Chapter 11].

Signal Detection Theory. Beyond the characterization of perceptual performance

through psychometric functions, modern psychophysics builds heavily on foundational

work on Signal Detection Theory (SDT) [Hautus et al., 2021]. The SDT framework

provides a principled approach for analyzing not only the sensitivity of perceptual

systems but also the decision-making processes underlying perceptual judgments. In

particular, SDT offers insights into the nature of the abstract internal representations

and cognitive strategies that mediate the relationship between physical stimuli and

behavioral responses [Hautus et al., 2021, Chapter 1].
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For example, consider the gray disk detection task described earlier. Within the SDT

framework, it is assumed that, on each trial, the visual system generates a sample of an

abstract decision variable, drawn from a normal distribution (illustrated in Figure 2.1b).

A binary present/absent judgment is then made by comparing this sample against a

fixed decision criterion; if the sample exceeds the criterion, the observer reports the disk

as visible, otherwise it is reported as invisible [Blackwell, 1946]. This simple proba-

bilistic model has been shown to accurately account for empirical patterns observed in

perceptual detection experiments [Hautus et al., 2021].

In experimental designs that examine multiple target luminance levels, increasing

the disk luminance results in a corresponding increase in the mean of the decision

variable distribution, as illustrated in Figure 2.1b, while the variance of the distribution

remains constant. This constant variance reflects an additive noise component, typi-

cally interpreted as internal noise accumulated along the visual processing pathway

[Bruce et al., 2014]. Notably, applying a single, fixed decision criterion across all lumi-

nance conditions can successfully predict the proportion of correct judgments in each

condition.

In this example, the decision variable represents an abstract measure of visibility, and

together with the decision criterion, accounts for the trial-to-trial variability observed

in subjects’ judgments. Crucially, while the decision criterion may shift depending on

experimental protocols or task instructions, the underlying decision variable remains

determined by the physical properties of the visual stimulus [Hautus et al., 2021, Chap-

ter 2]. This distinction reflects the fact that the criterion is influenced by the subject’s

response bias, whereas the decision variable captures stimulus-driven sensory informa-

tion. In the SDT framework, the separation between decision variable distributions for

different stimuli is quantified by the sensitivity index, 3′, which measures the distance
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between distributions in units of the system’s internal noise standard deviation [Hautus

et al., 2021, Chapter 1]. For example, two stimuli with 3′ = 1 are separated by one

standard deviation of internal noise, while higher values of 3′ indicate that the internal

representation of the stimuli are more distinct, and exhibit less overlap. In that sense,

in the context of detection tasks, given an experiment with unbiased responses, the

jnd and 3′ measures are linearly related as both indirectly measure the width of the

decision variable [Hautus et al., 2021, Chapter 4].

2.2.2 Speeded Decision-Making

In the psychology literature, efforts to understand the timing characteristics of decision-

making processes are commonly referred to as speeded decision-making. As discussed in

the previous section, psychophysical modeling provides a framework for constructing

internal representations of visual signals that underpin perceptual judgments and

decision-making. Several modeling approaches have been proposed to describe speeded

decision-making processes, in which an internal representation of decision evidence

is accumulated stochastically over time. In these frameworks, evidence continues to

accumulates until it reaches a pre-defined decision criterion, at which point an action

or judgment is triggered [Mazurek et al., 2003].

The parallels between evidence accumulation models and SDT models are notable:

the rate of evidence accumulation in these models, much like the decision variable dis-

tributions from SDT, have been shown to be modulated by stimulus characteristics [Bell

et al., 2006; Carpenter, 2004; Mahadevan et al., 2018]. Similarly, the decision criterion

serves as a measure of response bias [Reddi et al., 2003; Yamagishi and Furukawa, 2020]

(cf. decision criterion in SDT).

Among evidence accumulation models, two of the most prominent are the Drift-
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Figure 2.2: The Drift DiffusionModel (DDM). The G-axis represents time, and the𝑦-axis represents

accumulated evidence levels. Each decision follows a random walk process (e.g., the red

trajectory), where the decision criterion U reflects response bias, and the drift rate A determines

the speed of evidence accumulation. A decision is triggered when the accumulated evidence

reaches the pre-determined criterion U . Due to cognitive noise, individual decisions vary (e.g.,

the light blue trajectories), making action timing a probabilistic event.

Diffusion Model (DDM) [Palmer et al., 2005; Ratcliff, 1978] which models the decision

process as a stochastic random walk analogous to Brownian Motion, and the LATER

model, which assumes that the rate of evidence accumulation is randomly sampled at the

onset of a evidence accumulation and remains constant throughout the accumulation

process [Carpenter and Williams, 1995; Reddi et al., 2003]. Throughout this work, we

employ the DDM framework and therefore examine it in further detail below.

The Drift Diffusion Model. The DDM has been shown to be an effective and

accurate model across a wide range of decision-making contexts in psychology and

neuroscience, enabling the quantification of reaction latencies and choice behavior in

binary discrimination tasks [Fudenberg et al., 2020; Myers et al., 2022]. In this model, the

process of evidence accumulation is treated as a stochastic random process, reflecting

the noisy neural signal transmission and integration that occur during decision-making

processes [Gupta et al., 2022]. As the name suggests, the DDM models the observed



18

evidence as a diffusion process with non-zero drift, commonly referred to as Brownian

motion with drift.

Formally, the accumulated evidence at time 𝑡 is represented as a stochastic process

{𝐴(𝑡 ; A )}𝑡≥0. At the onset of a decision-making process, no evidence has been accumu-

lated, meaning that the initial state is 𝐴(0; A ) = 0. The evolution of the diffusion process

is then defined by the rule,

𝐴(𝑡 ; A ) = A𝑡 +𝑊 (𝑡), (2.3)

where𝑊 (𝑡) denotes a Wiener process, which captures the accumulation of noise over

time. The increments of the Wiener process,𝑊 (𝑡 +Δ𝑡) −𝑊 (𝑡), are normally distributed

with mean zero and variance Δ𝑡 for any Δ𝑡 > 0, that is, ∼ G(0,Δ𝑡) [Dobrow, 2016].

This implies that the variability introduced by noise in the evidence variable increases

proportionally with time, 𝑡 .

In essence, as time progresses, the accumulated evidence grows linearly on average

at a rate A , while also exhibiting stochastic variability due to internal noise. A decision

is triggered once the accumulated evidence reaches a pre-defined decision threshold, as

illustrated in Figure 2.2.

If we are only interested in characterizing the distribution of accumulated evidence

at a fixed time 𝑡 , the stochastic process can be solved for that time slice, yielding a

Gaussian distribution:

𝐴(𝑡 ; A ) ∼ G(A𝑡, 𝑡). (2.4)

However, our primary goal is to characterize the distribution of the time it takes for the

accumulated evidence to reach a specific criterionÐthat is, the time required to trigger
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a decision. Formally, we seek the distribution of the first-passage time, 𝑇 (U ; A ), defined

as the earliest time at which the evidence reaches a pre-defined threshold U :

𝑇 (U ; A ) ≔ inf
𝑡
{𝐴(𝑡 ; A ) = U}. (2.5)

Solving for 𝑇 (U ; A ) using Equations (2.3) and (2.5) (see Section 2.A for derivation),

we find that first-passsage time follows an Inverse Gaussian (IG), also known as the

Wald distribution [Folks and Chhikara, 1978]:

𝑇 (U ; A ) ∼ IG(U, A ), (2.6)

with the probability density function:

𝑓 (𝑡 ;U, A ) = U√
2𝜋𝑡3

exp
−(U − A𝑡)2

2𝑡
. (2.7)

Intuitively, the random variables describing accumulated evidence, 𝐴(𝑡 ; A ) and deci-

sion latency, 𝑇 (U ; A ), can be understood as inverses of the same stochastic process: the

former describes the distribution of evidence at a given time, while the latter describes

the distribution of time at a given evidence criterion. Accordingly, these variables follow

Gaussian and Inverse Gaussian distributions, respectively. For derivation details of

Equation (2.7) refer to Section 2.A.

2.3 The Human Visual System

The Human Visual System is a complex system that perceives the visual world using

a series of optical components, retinal photoreceptors, and neural structures. In this
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section, we review literature from psychology and neuroscience on topics relevant to

the work presented in this dissertation. Specifically, we provide an overview of visual

signal processing, beginning with the detection of light by photoreceptors in the retina

and tracing the transmission of neural signals to the visual cortex. We also discuss

prior research on the neural correlates and perceptual mechanisms underlying color

and motion perception, as well as studies of eye movement control, which governs how

we actively sample information from the visual field.

2.3.1 Visual Signal Processing

Retinal Photoreceptors. Light entering the human eye through the pupil is detected

at the retina by photoreceptor rod and cone cells as illustrated in Figure 2.3a [Tovée,

2008]. Rod cells are exclusively responsible for visual signaling in low luminance

environments (below approximately 3 nits), supporting what is known as scotopic and

mesopic vision, whereas cone cells are primarily responsible for detecting light in higher

luminance conditions beyond the sensitivity range of rod cells [Roufs, 1978]. In addition

to their role in photopic (daylight) vision, cone cells enable color perception, as there are

distinct families of cone cells, each sensitive to different ranges of light wavelengths, as

shown in Figure 2.3b [Williamson and Cummins, 1983]. The colorimetric implications

of these cone cell families will be discussed in more detail in Section 2.3.2.

Cortical Signal Processing. The light signals detected by the photoreceptors are

converted into neural electrical signals and transmitted through the optical nerve to the

back of the brain, where the primary visual cortex is located, as illustrated in Figure 2.4

[Tovée, 2008]. Upon reaching the visual cortex, these neural signals propagate forward

through multiple streams of neural pathways and are processed to extract various
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Figure 2.3: Retinal Photoreceptors. (a) The organizations of cone photoreceptors (among other

structures) in the human retina are shown. Illustration credits: J. Hirshfeld (https://www.

sciencenews.org/article/how-rewire-eye). (b) The spectral sensitivities of the three cone

cell types are visualized in red/green/blue for 𝐿/𝑀/( respectively.

statistics features of the visual input [Goodale and Milner, 1992; Henderson et al.,

2023]. For instance, neural correlates selectively tuned to spatial patterns [Schwartz

et al., 2002], color [Kim et al., 2020], motion [Braddick et al., 2001], and depth [Von

Der Heydt et al., 2000] have been identified through a combination of psychophysical

and physiological studies. Crucially, visual signals are progressively summarized into

higher-level statistical representations as they traverse the visual processing hierarchy

[Groen et al., 2017]. This process involves a degree of downsampling and abstraction,

suggesting that the brain allocates its computational resources toward extracting and

representing task-relevant high-level information at the expense of raw signal fidelity

[Freeman and Simoncelli, 2011]. One striking consequence of this summarization

is the human inability to reliably distinguish between natural images and modified

łmongrelž imagesÐvisualizations that preserve certain statistical properties of natural

scenes but lack coherent structureÐdue to information loss in the ventral visual stream

[Freeman and Simoncelli, 2011]. Ultimately, these higher-level visual representations

are integrated with other cognitive processes in brain regions such as the prefrontal

https://www.sciencenews.org/article/how-rewire-eye
https://www.sciencenews.org/article/how-rewire-eye
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Figure 2.4: The visual pathway. Visual signal is transmitted from the retina through the optical

nerve, passing through the lateral geniculate nucleus (LGN) before reaching the visual cortex in

the occipital lobe. Illustration credits: Brain from top to bottom (https://thebrain.mcgill.

ca/).

cortex, where perceptual information contributes to decision-making [Skirzewski et al.,

2022].

Foveal vs Peripheral Vision. As illustrated in Figure 2.5, the distribution of cone

cells in the human retina decreases rapidly toward the periphery. This non-uniformity

implies that the majority of visual information sampled by the retina is concentrated

at the center of our visual field [Roorda and Williams, 1999]. Importantly, this uneven

allocation of sensory resources is not limited to the photoreceptor layer; it persists

throughout subsequent stages of neural processing [Freeman and Simoncelli, 2011].

For example, measurement of receptive field sizesÐthe regions of visual space that

influence the activity of individual neuronsÐshow a similar non-uniform trend in the

visual cortex. Specifically, receptive fields associated with peripheral visual inputs

are considerably larger and less densely packed than those representing foveal input

https://thebrain.mcgill.ca/
https://thebrain.mcgill.ca/
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Figure 2.5: Retinal Photoreceptor Densities. Retinal cone and rod photoreceptor densities are

plotted as a function of eccentricity (i.e., angular distance from the fovea). The discontinuity

denoted with dotted lines corresponds to the location of the optic nerve where no photoreceptors

are present.

[Tovée, 2008]. This pattern, known as cortical magnification, reflects the fact that

a disproportionately large portion of neural computational resources is dedicated to

processing visual signals from the central (foveal) region of the visual field [Daniel

and Whitteridge, 1961; Tovée, 2008]. Furthermore, neural signals from foveal and

peripheral vision are predominantly processed through distinct pathwaysÐnamely the

magnocellular and parvocellular pathways, respectively. These pathways not only differ

in bandwidth and receptive field allocation but also exhibit distinct temporal response

characteristics [Hermann et al., 2021; Solomon, 2021].

Consequently, human peripheral vision exhibits several well-documented perceptual

limitations and peculiarities. Beyond its significantly lower spatial acuity compared to

foveal vision, peripheral vision shows asymmetries between detection and resolution

tasks [Thibos et al., 1987a,b], heightened sensitivity to motion [McKee and Nakayama,

1984], including elevated critical flicker-fusion frequencies [Hartmann et al., 1979],

reduced capacity for accurate color perception [Cohen et al., 2020; Noorlander et al.,

1983].
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A variety of models have been proposed to characterize different aspects of periph-

eral visual perception and predict stimulus visibility as a function of visual eccentricities.

Many of thesemodels are based onmeasurements of contrast sensitivity across the visual

field [Barten, 1999a; Cajar et al., 2016; Daly, 1992; Kelly, 1979]. While most metrics focus

primarily on spatial image characteristics [Rimac-Drıje et al., 2010; Rimac-Drlje et al.,

2011; Wang et al., 2001], more recent approaches have incorporated spatio-temporal

aspects of perception [Krajancich et al., 2021; Mantiuk et al., 2021].

2.3.2 Colorimetry

Color Perception. The study of color perception predates much of our physiological

understanding of visual signal processing. As a result, early research in color percep-

tion was primarily based on psychophysical color-matching experiments, in which

participants adjusted the brightness of different colored light sources to match a given

reference color. These experiments led to the development of the CIE 1931 𝑅𝐺𝐵 [Guild,

1931; Wright, 1929] and CIE 1931 𝑋𝑌𝑍 color spaces [Fairman et al., 1997]. The CIE

𝑋𝑌𝑍 color space, visualized in Figure 2.6a, has since become the foundation of modern

colorimetry, systematically mapping the entire gamut of visible light and providing a

hardware-independent framework for quantifying colors [Fairman et al., 1997].

Using the 𝑋𝑌𝑍 color space, early psychophysical threshold measurements (as dis-

cussed in Section 2.2.1) revealed that human color sensitivity is non-uniform within

this space [MacAdam, 1942]. Notably, the three-dimensional nature of the 𝑋𝑌𝑍 color

space suggested that the human visual system encodes colors using three basis func-

tionsÐlong before physiological recordings confirmed the peak spectral sensitivities of

different cone cell families [Bowmaker and Dartnall, 1980; Dartnall et al., 1983].

Due to the technical challenges of directly measuring the full spectral sensitivities of
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Figure 2.6: Color spaces. (a) and (b) depict an equiluminant slice of the 𝑋𝑌𝑍 and 𝐷𝐾𝐿 color

spaces respectively.

individual photoreceptor cells, such physiological recordings remain unavailable today

[Sincich et al., 2009]. However, psychophysical color-matching experiments involving

individuals with congenital color blindnessÐwho lack one of the three cone cell typesÐ

have enabled estimations of the spectral sensitivities of the long (𝐿), medium (𝑀), and

short (() wavelength-sensitive cone cells [Stockman and Sharpe, 2000] (visualized in

Figure 2.3b).

Beyond the observation that spectral information is encoded through three types of

cone receptors, further color-matching experiments have revealed the existence of color

opponency mechanisms. Color opponency suggests that certain colors are perceptually

opposite to one anotherÐfor example, increasing the intensity of red light (or decreasing

the intensity of green light) causes an opposing shift in the observed hue [Jameson and

Hurvich, 1955]. A similar opponency relationship was identified for blue and yellow

hues [Jameson and Hurvich, 1955]. These findings led to the development of the CIE
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𝐿𝐴𝐵 color space, which models perceptual color differences more uniformly than the

CIE 𝑋𝑌𝑍 space [Schiller and Logothetis, 1990].

Just as psychophysical experiments predicted the existence of 𝐿,𝑀 , and ( cone cells,

the discovery of color opponency foreshadowed a corresponding physiological mecha-

nism known as cone opponency. Neural recordings have shown that cone responses are

compared in a feed-forward manner within the Lateral Geniculate Nucleus (LGN) (see

Figure 2.4) before reaching the visual cortex, with opponent channels forming early in

the visual pathway [De Valois et al., 1966; Krauskopf and Karl, 1992]. These findings led

to the development of the𝐷𝐾𝐿 color space named after its originators [Derrington et al.,

1984a], which provides a physiologically relevant, perceptually uniform representation

of color (cf. Figures 2.6a and 2.6b).

In 𝐷𝐾𝐿 color space, the two primary opponent mechanisms correspond to:

1. The difference between 𝐿 and𝑀 cone activations (𝐿 −𝑀 channel), which encodes

red-green opponency.

2. The difference between combined 𝐿 + 𝑀 and ( cone activations ((𝐿 + 𝑀) − (

channel), which encodes blue-yellow opponency.

Thus, the DKL color space is defined as a linear transformation of the LMS color space.

Assuming a D65 gray background the transformation between the color spaces can be

expressed as



𝐷𝐴𝑐ℎ

𝐷𝑅𝐺

𝐷𝐵𝑌


=



1 1 0

1 −2.3112 0

−1 −1 50.9875





𝐿

𝑀

(


, (2.8)

where the 𝐷𝐾𝐿 color space vectors representing the achromatic, red-green, and blue-
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yellow channels respectively. With its strong physiological and psychophysical foun-

dations, the 𝐷𝐾𝐿 color space is widely used in studies of color discrimination [Ashraf

et al., 2024; Conway et al., 2018; Hansen et al., 2009].

Eccentricity Effects. As discussed in Section 2.3.1, human color perception exhibits

eccentricity effects, meaning that color sensitivity decreases with increasing retinal

eccentricity, much like visual acuity [Cohen et al., 2020; Hansen et al., 2008, 2009]. For

example, given a reference color, discrimination thresholds in 𝐷𝐾𝐿 color space form

ellipses, and the size of these sub-threshold regions expands significantly as retinal

eccentricity increases. At 50◦ eccentricity, the ellipse radii are approximately 4.5 times

larger than at 5◦ eccentricity, indicating a substantial decline in color discrimination

ability in peripheral vision [Hansen et al., 2009].

Cognitive Effects. Beyond low-level perceptual limitations, color sensitivity is also

influenced by cognitive factors and task demands. For instance, during fixation shifts

(saccades), color sensitivity decreases uniformly and significantly [Braun et al., 2017].

Furthermore, prior studies have found that color discrimination is notably less sensitive

in comparison to color detection [Vingrys and Mahon, 1998]. More recently, Cohen et al.

[2020] demonstrated that color sensitivity is further diminished during active and natural

viewing tasksÐto the extent that peripheral color desaturation becomes imperceptible

to observers. These findings underscore the complexity of color perception, a field that

continues to be actively explored in contemporary vision science.
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Figure 2.7: Optical flow processing. Optical flow of a moving scene is a vector field representing

the motion of local patterns across the visual field, indicated by red lines. The focus of expansion

(FOE) is the divergence point of this vector field. Human observers compensate for global

motion effects when estimating the scene-relative motion of targets.

2.3.3 Motion Processing

As perceptual judgments become more complexÐsuch as in motion perceptionÐour

current understanding of neurophysiology and psychology encounters significant lim-

itations. In this dissertation, we investigate how humans process local and global

motion cues to form a cohesive perception of their surroundings. This review focuses

specifically on literature relevant to this topic.

Optical Flow Processing. As illustrated in Figure 2.7, human perception of object

and environmental motion relies on the optical flow it generates within the visual field

[Jain, 1983; Warren Jr and Hannon, 1988]. For local optical flow patterns, observers

can visually track moving targets through pursuit eye movements, which minimize

retinal slip. At the global level, optical flow resulting from self-motion is crucial for

scene understanding and locomotion, serving as the primary visual cue for interpreting

complex motion patterns, such as those seen in video displays, and for perceiving 3D
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spatial layouts [Talukder and Matthies, 2004]. Accordingly, optical flow is widely used

in research to characterize the spatiotemporal motion of dynamic visual stimuli [Huang

et al., 1995; Neumann, 1984].

Optical flow patterns generated by rigid translational motion exhibit a stationary

on-screen point, known as the focus of expansion (FOE), fromwhich flow vectors radiate

outward [Jain, 1983]. The location of the FOE serves as a critical visual cue that humans

use to infer the direction of motion for both objects and scenes [Jain, 1984; Warren Jr

and Hannon, 1988]. Consequently, prior research has explored how the dynamics of

the FOE, which encode observer-relative scene motion in 3D space, influence human

motion perception [Jain, 1984; Lappe et al., 1999; Warren Jr and Hannon, 1988].

Motion Estimation of 3D Visual Targets. Understanding how humans process

motion cues to differentiate between self- and object motion is crucial for assessing

the effects of artificially induced motion sensations. This is especially relevant for

vectionÐthe sensation of self-motion in a stationary setting [Howard and Howard, 1994;

Hu et al., 2019]Ðas well as for motion-rich display environments, such as racing video

games or films featuring dynamic camera movements.

In most real-world scenarios, self-motion perception relies on a combination of

visual and non-visual cues to accurately estimate 3D movement vectors within the envi-

ronment [Xie et al., 2020b; Xing and Saunders, 2022]. Notably, when certain cuesÐsuch

as vestibular signals [DeAngelis and Angelaki, 2012] and visual depth information from

stereopsis [Didyk et al., 2011] and accommodation [Murray, 1994]Ðare experimentally

removed, motion perception becomes increasingly biased warping perceptions of both

self-motion [Dokka et al., 2019; Layton and Fajen, 2016; Li et al., 2018; Xie et al., 2020b;

Xing and Saunders, 2022] as well as object motion [Xing and Saunders, 2022]. That
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is, perceptual estimates of the Actual Target Motion in Figure 2.7 become inaccurate.

Investigations into neural correlates of self- and object motion dissociation suggest

that vestibular signals contribute to fine-tuning these perceptions [Sasaki et al., 2017].

Further studies on the effects of visual complexity and the semantic structure of en-

vironments indicate that the congruency of optical flow from self- and object motion

affects the accuracy of object motion perception [Lutwak et al., 2022].

2.3.4 Eye Motor Control

Due to the foveated nature of human vision, as discussed in Section 2.3.1, the eyes are

in constant motion, sampling the visual field to accurately analyze the surrounding

environment. As a result, the human visual system is highly dynamic and capable of

executing various types of eye movements, including smooth pursuit, vestibulo-ocular,

saccadic, and vergence movements [Leigh and Zee, 2015].

In this work, we investigate the characteristics of these eye movements and employ

eye-tracking technology to develop computational models that capture their dynamics.

This section reviews the relevant literature on the different types of eye movements

examined in this study.

Saccades. Human eyes change visual fixation three to four times every second [Fabius

et al., 2019] via rapid exploratory movements called saccades Leigh and Zee [2015].

Saccadic eye movements allow for frequent shifts of attention to better understand

one’s surroundings and to localize objects of interest, e.g., potential dangers [Purves

et al., 2008]. These movements are ballistic and follow a predictable trajectory [Bahill

et al., 1975a; Kowler, 2011], with amplitude, velocity, and duration exhibiting nonlinear

relationships. Short saccades, in particular, display an asymmetric, bell-shaped velocity
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profile [Bahill et al., 1975a], a characteristic that enables the modeling of saccadic

profiles even with partial observations.

During a saccade, and for a brief period afterward, the visual system undergoes

a temporary perceptual blindness known as saccadic suppression [Burr et al., 1994;

Diamond et al., 2000; Ibbotson and Cloherty, 2009; Matin, 1975]. This phenomenon

naturally helps gaze-contingent graphics tolerate higher eye-tracking latencies [Albert

et al., 2017] and has also been utilized in virtual reality redirected walking [Sun et al.,

2018].

Saccadic eye movements are often inaccurate, frequently undershooting their target

[Becker and Fuchs, 1969; Deubel et al., 1982]. The magnitude of this error depends on

factors such as the target location uncertainty, sensory noise [van Beers, 2007], and

adaptation processes [Cotti et al., 2009]. Researchers have proposed modeling this

uncertainty based on the visual characteristics of the target [Carpenter, 2004; Lisi et al.,

2019].

Smooth Pursuit. While the primary function of saccades is to correct positional

errors in gaze direction and move visual targets of interest into the fovea, pursuit eye

movements are used to maintain the fixation on those visual targets [Leigh and Zee,

2015]. The pursuit system is driven by velocity differences between the gaze and the

target, relying on the retinal slip signal of the target’s image [Blohm and Lefèvre, 2010;

Lisberger et al., 1987]. As a result, pursuit eye movements operate as a feedback system

that synchronizes the eye and the target motion, ensuring that a foveated moving target

remains within the fovea throughout the tracking process [Robinson, 1965].

However, pursuit eye movements do not initiate immediately [Lisberger et al., 1987].

Thus, when a foveated visual target moves suddenly, a catch-up saccade is triggered
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Δαs Δαs

(a) saccadic movement

Δαv/2 Δαv/2

(b) vergence movement

Δαs–Δαv/2 Δαs+Δαv/2

(c) combined movement

Figure 2.8: Illustration of various eye movements. (a) In saccadic movements, both eyes rotate by

the same amount in the same direction. (b) In vergencemovements, the eyesmove symmetrically

in opposite directionsÐaway from each other or converging toward each other. (c) In combined

movements, each eye moves by a different amount. The curvature of the iso-vergence circle is

exaggerated and is not to scale.

to correct the accumulating positional error until the pursuit system is fully engaged

[Missal and Heinen, 2017]. The maximum speed for smooth pursuit eye movements in

most humans does not exceed 30 deg/s, meaning that stable tracking of faster-moving

targets necessitates additional catch-up saccades. The predicted positional error has

been shown to be a reliable indicator of whether such catch-up saccades will be triggered

[Nachmani et al., 2020]. Additionally, target visibility has been found to influence the

performance characteristics of both pursuit and catch-up saccade movements [Spering

et al., 2005].

Vergence. Vergence movements are best understood in contrast to saccadic move-

ments, which were described earlier. During saccades (Figure 2.8a), both eyes move

conjugately, shifting gaze along a circle of iso-vergence (or the geometric horopter),

which is determined by the centers of the two eyes and the fixation point (Figure 2.8)

[Gibaldi and Banks, 2019]. In contrast, pure vergence movements (Figure 2.8b) are

slower and disconjugate, adjusting gaze to a new depth and thereby defining a new
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geometric horopter [Gibaldi and Banks, 2019; Yang et al., 2002]. In essence, while sac-

cades enable rapid side-to-side eye movements within the same depth plane, vergence

movements allow shifts between different depths.

In stereo displays that lack accommodative cues, the displacement of images pre-

sented to each eye provides a critical depth cue, driving vergence eye movements. A

common issue in VR/AR settings arises from the conflict between variable vergence cues

from stereo displacement and the static accommodation cue corresponding to the dis-

play depth. This mismatch leads to discomfort known as the vergence-accommodation

conflict [Julesz, 1971]. The duration of pure vergence movements depends on travel

distance, direction, and initial depth [Templin et al., 2014]. Measuring vergence move-

ments is more challenging than measuring saccades due to their smaller amplitude

[Yang et al., 2002; Yang and Kapoula, 2004], inconsistent performance [Welchman et al.,

2008], complex neural coding [Cullen and Van Horn, 2011; King, 2011; Semmlow et al.,

2019], and heightened sensitivity to external factors such as pupil dilation [Feil et al.,

2017; Jaschinski, 2016; Nyström et al., 2016].

In natural 3D environments, saccadic and vergence movements are more commonly

combined (Figure 2.8c) than executed in isolation, reflecting the 3D distribution of

visual targets [Kothari et al., 2020; Lang et al., 2014]. Prior research has shown that the

addition of saccades accelerates combined eye movements compared to pure vergence

alone [Collewijn et al., 1995; Coubard, 2013; Erkelens et al., 1989; Pallus et al., 2018; Yang

and Kapoula, 2004]. Competing theories seek to explain the neurological pathways

governing vergence and combined movements, but no single theory has achieved

consensus [Mays, 1984; Quinet et al., 2020; Zee et al., 1992]. This lack of consensus

contrasts with the well-established theories for saccadic movements [Bahill et al.,

1975b].
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2.A Deriving Equation (2.7)

For a Brownian motion process as described by Equation (2.3), the joint probability

distribution of an evidence value 𝑎 observed at time 𝑡 is described by the Fokker-Plank

equation:

𝜕𝑓

𝜕𝑡
+ A 𝜕𝑓

𝜕𝑎
=
1

2

𝜕2𝑓

𝜕2𝑎
, (2.9)

with boundary conditions



𝑓 (0, 𝑎) = 𝛿 (𝑎)

𝑓 (𝑡, U) = 0

(2.10)

where ? is the probability density function of particles behaving according to Equa-

tion (2.3), and 𝛿 is the Dirac delta function. The solution to the boundary value problem

described by Equation (2.9), with boundary conditions of Equation (2.10), is

𝑓 (𝑡, 𝑎) = 1√
2𝜋𝑡

(
exp

[
− (𝑎 − A𝑡)

2

2𝑡

]
− exp

[
2AU − (𝑎 − 2U − A𝑡)

2

2𝑡

] )
. (2.11)

This probability density function describes the joint probability of observing any given

pair of time 𝑡 and evidence 𝑎. Using this density function, we first compute the proba-

bility of the evidence being below the criterion, U . For the distribution of first passage

time, 𝑇 , this probability is equivalent to the survival function. I.e.,

( (𝑡) = 𝑃 (𝑇 > 𝑡) =
∫ U

−∞
𝑓 (𝑡, 𝑎)3𝑎. (2.12)
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Plugging in Equation (2.11) into Equation (2.12) we get,

( (𝑡) = Φ

(
U − A𝑡√

𝑡

)
− exp(2𝜈U)Φ

(−U − A𝑡√
𝑡

)
. (2.13)

Finally, we are able to derive the probability density function of 𝑇 via the relation

between the PDF function and the survival function:

ℎ (𝑡) = −3(
3𝑡

=
U√
2𝜋𝑡3

exp
−(U − A𝑡)2

2𝑡
.

(2.14)
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Chapter 3

Color Pathway Limitations and

Display Design

In this chapter, we explore the limitations of color vision in human visual periphery

(see Section 2.3.2 for relevant background), and how these limitations enable us to

design more power efficient head-mounted display systems. Such power optimization

opportunities are timely, as AR/VR devices are increasingly becoming untethered for

portability, outdoor usage, and unrestricted locomotion to enable ultimate immersion.

At the same time, as we’ve discussed in Section 2.1.1, the display specifications are

far from reaching the full requirements for highest fidelity that humans can perceive.

Thus, the demands for higher resolution, framerate, and dynamic range are steadily

increasing, which is directly at odds with the limited energy capacity of untethered

AR/VR devices.

For example, when fully charged, both the Oculus Quest 2 andHololens 2 can actively

run only for 2-3 hours1. Since the total energy capacity increases only marginally

1https://docs.microsoft.com/en-us/hololens/hololens2-hardware

https://docs.microsoft.com/en-us/hololens/hololens2-hardware
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because łthere is no Moore’s law for batteriesž [Schlachter, 2013], power consumption

has become a primary concern in the design process of AR/VR devices [Debattista

et al., 2018; Wang et al., 2016; Zhang et al., 2021b]. In our measurement of HTC Vive

Pro Eye and Oculus Quest 2, the display consumes as much as half of the total power

consumption by comparing the power when the display is on vs. off. The results are

consistent with data reported in other measurement studies [Leng et al., 2019; Yan et al.,

2018]. Display power will only become more important in the cloud rendering paradigm,

where the computation is offloaded to the cloud, heightening the contribution of display

to the total device power.

Conventional display power optimizations are geared toward smartphones, which,

when directly applied to VR devices, lead to significant visual quality degradation. This

is because smartphone display optimizations are fundamentally gaze-agnostic, rightly

so because smartphone displays have very narrow field-of-view. These optimizations

either modulate pixels uniformly across the display [Shye et al., 2009; Yan et al., 2018] or

are purely based on the content (e.g., UI elements) [Dong et al., 2009; Dong and Zhong,

2011; Ranganathan et al., 2006]. Classic gaze-contingent optimizations in AR/VR such

as foveated rendering, while reducing the rendering load [Krajancich et al., 2021; Patney

et al., 2016], do not (directly) reduce the display power.

We present a gaze-contingent rendering approach that reduces the power consump-

tion of untethered VR displays by as much as 24% while preserving visual quality during

active viewing. We achieve this by only modulating the chromaticity of the display

output without changing luminance.

This method is jointly motivated by hardware research that revealed the variation

of power consumption of displaying different colors on LEDs [Dong and Zhong, 2011],

as well as limitations of human peripheral color vision, as discussed in Section 2.3.2.
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That is, given an original frame such as in a 360 video, we seek a computational model

that guides a gaze-contingent color shift that (1) requires the minimal power cost, and

(2) preserves the perceived fidelity.

To accomplish this, we conducted two studies. First, we quantitatively model how

our color sensitivity degrades with higher retinal eccentricities. Second, we physically

measure the LED display power consumption as a function of the displayed color. Given

the perceptual and the power model, the system performs a constrained optimization

that identifies, for each pixel, an alternative color that minimizes the power consump-

tion while maintaining the same perceptual quality. Critically, the optimization problem

has a closed-form solution because of the judicious design decisions we made in con-

structing the perceptual and power models. As a result, this perception-perserving

color modulation can be implemented as a real-time shader.

We validate this method with both subjective studies on panoramic videos, as well

as an objective analysis on large-scale natural image data. We demonstrate the model’s

effectiveness in display power reduction and perceptual fidelity preservation, relative

to an alternative luminance-based łpower saverž. Our objective analysis concludes

that this model shows generalizability to a large variety of natural scenes and save, on

average, 14% power.

Complementary to prior work on reducing the rendering power, this work reduces

the display powerÐby modulating the display color while preserving perceptual fidelity.

We show that significant power saving is readily obtainable by adjusting only color;

combining color and luminance modulation would conceivably lead to higher power

savings, which we leave to future work (see Section 3.4.3). Source code and data for

this chapter’s contents are available at www.github.com/NYU-ICL/vr-power-saver.

www.github.com/NYU-ICL/vr-power-saver
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Figure 3.1: Study for quantifying human color discrimination. (a) depicts the psychophysical

study setup described in Section 3.1. (b) The sequence of 𝐵𝑌 = ( − (𝐿 +𝑀) axis color contrasts
in the 𝐷𝐾𝐿 color space that were displayed during an adaptive staircase are shown. Correct

and incorrect responses are color coded, and staircase reversals are outlined (see legend). The

established perceptual threshold is visualized via the dotted red line. (c) The overall established

color discrimination thresholds (red dots) for the 5 sampled reference colors (black crosses)

are displayed in the 𝐷𝐾𝐿 color space. White bars indicate 75% confidence intervals of the

measurements. We only visualize the thresholds of the 25◦ and 25◦ eccentric discrimination

tasks for one of the reference colors to avoid visual clutter. Cubic splines were used to connect

discrimination thresholds to improve plot readability.

3.1 Eccentricity Effects on Color Perception

We aim to exploit how human perception of color varies across the visual field, so that

we can adjust the appearance of visual stimuli in our peripheral vision in an advanta-

geous way. Hansen et al. [2009] showed that while our ability to discriminate colors

significantly deteriorates at high retinal eccentricities, we still maintain some ability to

discriminate colors at eccentricities as high as 45◦. Drawing inspiration from this work,

we designed and performed a psychophysical study on the perceptual discrimination

thresholds of colors, given various reference colors (5 total) and retinal eccentricities

(from 10◦ to 35◦). The experimental data later transforms to a computational model in

Section 3.3.1.

The 𝐵𝑌 = ( − (𝐿 +𝑀) and 𝑅𝐺 = 𝐿 −𝑀 axes are axes in the 𝐷𝐾𝐿 color-space, which
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compares the difference between ( vs 𝐿 +𝑀 and 𝐿 vs𝑀 cone activations [Derrington

et al., 1984a].

3.1.1 Experimental Design

Setup. We perform our study with the HTC Vive Pro Eye head-mounted display as

shown in Figure 3.1a. Participants remained seated during the duration of the study,

and interacted with the user study software via the keyboard.

Participants. We recruited 5 participants (ages 20-32, 2 female) for a series of four-

alternative forced choice (4AFC) adaptive staircase experiments (see Section 2.2.1) to

determine the discrimination thresholds. All participants had normal or corrected-

to-normal vision and exhibited no color perception deficits as tested by the Ishihara

pseudo-isochromatic plates. In this pilot study, we chose 5 participants due to the

long duration of our staircase experiment. This is also practiced for similar threshold-

determination psychophysical experiments [Krajancich et al., 2021; Sun et al., 2020].

All experiments were approved by an ethics committee and all participants’ data was

de-identified.

Stimuli. As shown in Figure 3.1a, the stimuli were four colored disks (with a diameter

of 5 degrees). They were rendered simultaneously on top of a neutral gray background

(i.e., [0.5, 0.5, 0.5] in linear sRGB space, or 71.5 nits). The azimuth position of the disks

remained constant throughout the entire study, located at 45◦, 135◦, 225◦, and 315◦ (i.e.

the four diagonals in the participant’s visual field), while the radial position (i.e., the

retinal eccentricity) varied across sequences to be either 10◦, 25◦, or 35◦. Three of the

disks have the same łreferencež color, and the fourth has a łcalibrationž color which
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changes throughout a sequence of trials. The space of colors that the disks can obtain

is visualized as a color-space in Figure 3.1c. The luminance of all disks is maintained at

the same level as the background’s luminance.

Tasks. The task was an 1-up-2-down 4AFC adaptive staircase procedure targeting

a performance level of 71% correct. The study was conducted in a single session split

into 60 staircase sequences (= 5 reference colors × 3 eccentricities × 4 color space

dimensions, as specified below) of trials.

During each trial participants were instructed to identify which one of the 4 colored

disks appeared different. The participant was instructed to fix their gaze on a white

crosshair at the center of the screen for the duration that the stimuli were shown. We

used eye tracking to ensure participants maintain their gaze at the central crosshair. We

automatically rejected a trial if the user’s gaze moves beyond 3◦ eccentricity, randomized

the trial order again, and notified them. At the start of each trial of a sequence, we shuffle

the four colored disks, and display them for 500 ms (the same stimulus duration used in

prior color discrimination literature [Hansen et al., 2009]). Once the stimuli disappear,

we prompt the participant to identify and select the disk with the calibration color,

using the keyboard. Depending on their answer, the calibration disk’s color was made

easier or harder to discriminate in the subsequent trial by adjusting the chromaticity of

the calibration disk to be closer/farther from the reference color while preserving its

luminance. After 6 reversals of this staircase procedure (or a maximum of 50 trials), the

sequence terminates, and the next sequence begins. We visualize the progression of an

example staircase-procedure in Figure 3.1b.

Across the sequences, we present 5 different reference colors, as visualizedwith black

crosses in Figure 3.1c, each presented at 10◦, 25◦, and 35◦ retinal eccentricities. For each
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reference color, we adjust the color from four directions along the two equi-luminant

cardinal axes in the DKL color-space (see Section 2.3.2 for details).

The entire study took approximately 1.5 hours for each participant and they were

encouraged to take breaks in between sequences. At the beginning of each user study,

the participants completed 1 sequence to familiarize with the procedure and equipment.

3.1.2 Results and Discussion.

Results. In total, 8, 123 trials were obtained from our participants (5 participants

each with 60 sequences consisting of ≈ 21 trials each on average). We record the color

values at each reversal in DKL coordinates, and average the last 3 reversals (out of 6

total) to determine the final discrimination threshold for each participant. The average

thresholds across all participants are visualized in Figure 3.1c in red, along with the 75%

confidence interval error bars. As we approach the reference color from four directions

in DKL space, we obtain four different thresholds for each color at each eccentricity. The

lines connecting the four thresholds do not represent the shape of the overall threshold,

and is only served as a visual guide to group each set of thresholds together. To avoid

visual clutter, we plot discrimination thresholds at 10◦ eccentricity for each reference

color and 10◦, 25◦, and 35◦ eccentricity thresholds for one reference color. Refer to

Section 3.4.3 for all the measured threshold values separated by each participant.

Discussion. For our work, we only sampled colors on a single equi-luminant plane. In

𝐷𝐾𝐿 space, this corresponds to keeping the 𝐷𝐴𝑐ℎ dimension of the color space constant.

First, we observed unequal thresholds with different reference colors even if they were

displayed at the same eccentricity. That motivates us to develop our computational

perceptual model considering the reference color as one of the inputs.
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Prior work which utilizes the 𝐷𝐾𝐿 color-space suggests that discriminative thresh-

olds measured with respect to a specific adaption luminance can be extended to arbitrary

adaptation luminances due to the linearity of the cone-opponent process [Larimer et al.,

1974, 1975]. We use these results in this research and only conducted discriminative

threshold measurements at a single adaptation luminance of 71.5 cd/m2 as mentioned

above.

In the scope of our work, we did not study how spatial frequencies of stimuli affect

discriminative thresholds. Our experimental data provides the thresholds for a stimulus

with a dominant frequency equal to 0.2 cpd corresponding to the stimulus size used

throughout the experiment.

Unsurprisingly, our data shows a decrease of ability to discriminate chromatic dis-

crepancies as the retinal eccentricity increases. The trend agrees with past experiments

[Hansen et al., 2009], and is intuitive given the higher density of retinal receptors in the

fovea [Song et al., 2011]. Figure 3.1c shows that the fall-off of discriminative sensitivity

is very sharp, and the region of sub-threshold chromaticities at 35◦ can take up as much

as a third of the observable hues. Some participants noted that at high eccentricities,

all four disks appeared to be different, even though three of the disks were colored

identically. As such, the amount of noisy thresholds at high eccentricities attribute to

the larger uncertainty for the overall threshold measurements as shown in Figure 3.1c.

Further investigations into this surprising phenomenon is an interesting future work.

We also observe inter-subject variation in the measured thresholds, as shown in Sec-

tion 3.4.3. While this could be due to a number of reasons (e.g., observermetamerism [Xie

et al., 2020a], pre-receptoral filtering [Norren and Vos, 1974], calibration, experimental

setup, etc.), further study is required to understand the reason for these differences.

Nevertheless, for developing a computational model, we use the most conservative



44

thresholds across participants, instead of an average fit. This assures generalization to

a larger population considering individual variances (see Section 3.3.4).

Lastly, it is notably critical that those thresholds only hold for discriminative tasks.

Using the observed thresholds, we performed a preliminary validation with a sequential

detection task and two-alternative-forced choice (2AFC). In this study, the same group

of participants was instructed to observe pairs of stimuli and identify whether they

appear identical. Some of the trials consist of one non-altered image, with the other

containing peripheral color altering within the identified thresholds. We observed that a

majority of users can successfully identify the altered condition, suggesting the distinct

perceptual thresholds between discrimination and detection tasks. Nevertheless, during

active vision tasks where an observer is instructed to freely observe natural visual

content, their sensitivity may significantly reduce [Cohen et al., 2020]. We hypothesize

that the color sensitivity during active vision is also lower than during discriminative

tasks. We investigate and validate the hypothesis in more detail in Section 3.4.1.

3.2 Measuring Display Power with Varied Colors

To measure the power consumption characteristics of VR displays and how it varies

depending on the images displayed on them, we conduct a hardware study, and later

use the collected data to derive a model for predicting the power consumption of a

display given the image displayed on it.

3.2.1 Experimental Setup.

For our power study, we use the Wisecoco H381DLN01.0 OLED. The display module

has two identical displays, each with a resolution of 1080×1200, matching the aspect
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Figure 3.2: Display power measurement and modeling. (a) The OLED display power measurement

hardware rig is visualized (see Section 3.2.1 for details). (b) Voltage and current readings are

multiplied to measure power consumption at each timestep and plotted as a function of the

the displayed color which was cycled through every 5 seconds. The colors shown are the

eight vertices of the B𝑅𝐺𝐵 color cube. (c) The measured power consumption values for various

displayed colors are compared to the linear power model predictions. The power model was

regressed by randomly sampling 52 colors in the B𝑅𝐺𝐵 color space and resulted in a mean

relative error of 0.996%. The dashed line indicates the line of perfect measurement and prediction

agreement.

ratio of HTC Vive Pro Eyes, which is what we use for perceptual studies.

We do not use the native display modules in Vive Pro Eye HMD and Oculus Quest

2 for power studies, because their displays are physically tightly integrated into the

headsets; thus, the display power cannot be easily isolated from the rest of the system.

In the case of the Oculus Quest 2, the headset is powered by a battery that is tightly

integrated into the headset, which prevents us from using methods used in studying

smartphone display power, where the battery is unplugged and replacedwith an external

power supply that has internal power sensing capabilities [Dash and Hu, 2021; Dong

et al., 2009; Halpern et al., 2016].

Figure 3.2a shows the experimental setup to measure display power. We intercept

the display power supply with a SwitchDoc PowerCentral board, which has an on-board

INA219 module (with a 0.1Ω shunt resistor) to measure the current. The INA219 module

is connected to an Arduino board through the I2C interface. We develop a driver that
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runs on the Arduino board to get the display current and voltage, from which we can

calculate the power.

The driver running on the Arduino board configures the INA219 sensor to output

a new power measurement every ∼ 68 ms; each power reading is internally averaged

over 128 samples, resulting in an effective power sampling rate of ∼ 1, 882 Hz.

3.2.2 Measurement and Discussion.

As a preliminary test, we measure the power consumption of the eight vertices of the

sRGB color cube. For each color, we set all the display pixels to that color, display it for

five seconds, and calculate the average power. Figure 3.2b shows the measured power

trace. It is clear that the display power consumption is sensitive to the color.

We make two observations from Figure 3.2b. First, even when the display is showing

black pixels, i.e., when the LEDs are not emitting light, there is a non-trivial amount of

static power consumption. The power beyond the static portion is consumed by the

LEDs, which we dub the dynamic display power. This static power is consumed by the

peripheral circuitry that drives the LEDs, such as the per-pixel transistors and capacitor

as well as the addressing logic [Huang et al., 2020]. The contribution of the static power

is about 50% in display white and is about 80% when displaying red and green.

The trend of semiconductor technology is that the circuit power is decreasing over

time with better fabrication technologies [Bohr, 2007], but the LED power is much

harder to reduce because the display must sustain certain luminance levels to meet

brightness requirements, which arguably do not change dramatically over time. Our

work aims to reduces the (color-sensitive) dynamic power of the display, which will

become more important as the static power reduces in the future.

Second, the dynamic power consumption of red and green colors are roughly
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red green blue white

Figure 3.3: Microscopic photos of the OLED panel. We image the display under B𝑅𝐺𝐵 red, green,

blue, and white colors using a Carson MicroFlip mircoscope with a magnification of 120x. Note

that the display red and green primaries roughly match their corresponding primaries in the

B𝑅𝐺𝐵 color space, but B𝑅𝐺𝐵 blue requires contributions from both the blue and red sub-pixels

from the display panel.

half that of blue. This is because displaying the sRGB blue on our display requires

contributions from both the blue and red sub-pixels (due to the primaries used by this

display) as confirmed by examining the microscopic images of the display (Figure 3.3).

As a result, if we expect to see any energy wins, we anticipate that green-, and/or,

red-shifting images can decrease the power consumption of the image. We will leverage

the measured data to obtain a computational power-vs-color model in Section 3.3.2.

3.3 Perceptually Guided Power Optimization

Using the results of our perceptual user study, and hardware power measurements, we

develop a display power optimization model under the constraint that the change in the

images observed by human subjects is not perceptible. In Section 3.3.1, we first derive a

computational model of human color discrimination (Figure 3.4) using the data obtained

from Section 3.1. In Section 3.3.2, we build a linear power consumption model regressed

from the physical measurement data in Section 3.2. Finally, in Section 3.3.3, we integrate

the two models above (as a constrained convex optimization) toward a closed-form
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Figure 3.4: Color perception model and power-aware chromaticity optimization. (a) We illustrate

the perceptual model-predicted discrimination thresholds of nine equi-lumianant reference

colors in 𝐷𝐾𝐿 color space at two eccentricities. Areas within individual ellipses are predicted to

be perceptually indistinguishable from their reference colors (black cross). (b) Thresholds in

𝐷𝐾𝐿 space can be transformed into linear B𝑅𝐺𝐵 space via linear transformation. We visualize

thresholds in B𝑅𝐺𝐵 space when eccentricity equals 25◦ by shading sub-threshold color sets

with their corresponding reference colors. (c) The model-guided chromaticity shifts at 25◦
eccentricity that minimize power consumption are shown as a vector field. The original and

power-optimized colors correspond to the tail and head of the vectors respectively.

display color modulation function. It aims to minimize the display’s power consumption

while ensuring the modulation within the human discriminative thresholds.

3.3.1 Perceptual Model for Color Discrimination

We develop a computational framework for quantifying the discriminative threshold of

any given color at different eccentricities. The set of colors which are indistinguishable

from some test color by human observers are modeled as ellipse shaped regions defined

over equi-luminant color-spaces [Hansen et al., 2008, 2009; Krauskopf and Karl, 1992].

Notably, the MacAdam [1942] ellipses are the first to model discriminative thresholds

as such. Additionally, Krauskopf and Karl [1992] show that the sizes of these ellipses

are best described in the DKL color-space [Derrington et al., 1984a].

It is customary to discrimination thresholds using the color contrast; that is, colors
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are defined relative to a reference (a.k.a., the adaptation) luminance. For a test color, t,

and an adaptation color b, expressed in the 𝐷𝐾𝐿 color space, the color contrast of the

test color with respect to the adaptation color equals

𝜿 (t; b) = t − b
𝑏𝐴𝑐ℎ

. (3.1)

where 𝐴𝑐ℎ is the achromatic channel of the 𝐷𝐾𝐿 color space (cf. Equation (2.8)).

In this work, we use the 𝐿𝑀( color space as defined by Smith and Pokorny [1975],

which is what the original 𝐷𝐾𝐿 color space is based on [Derrington et al., 1984a]. The

particular 𝐿𝑀( cone fundamentals are so defined that the coordinate 𝑡𝐴𝑐ℎ of a color is

strictly equal to the luminance of the color, i.e., the 𝑌 coordinate in the 𝑋𝑌𝑍 space.

Modeling ellipse level sets. In our model, we represent the set of all equi-lumiant

colors which cannot be discriminated from a test color, t, relative an adaptation color, b,

using an ellipse-shaped region centered around the color contrast of the test color. The

boundary of this ellipse region corresponds to the discriminative threshold of 𝜿 (t, b).

The set of color coordinates which represent this threshold, x, fulfill the system of

equations:



G𝐴𝑐ℎ = 𝑏𝐴𝑐ℎ

E(x; t, b,𝜶 ) = 0.

(3.2)

The first constraint ensures that all the color coordinates on the threshold are equi-

luminant to the adaptation color. The second constraint ensures that all x are on the

edge of the ellipse region with major and minor semi-axes equal to 𝜶 = (U𝑅𝐺 , U𝐵𝑌 ) ∈ R2.
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Formally, the function E (·) is defined as

E(x; t, b,𝜶 ) =
∑︁

𝑖={𝑅𝐺,𝐵𝑌 }

(
𝜅 (G𝑖 ;𝑏𝑖) − 𝜅 (𝑡𝑖 ;𝑏𝑖)

U𝑖

)2
− 1, (3.3)

Model Regression. Equation (3.3) requires the knowledge of the ellipse-size param-

eters, U𝑖 . Prior work has shown that U𝑖 relates to the color contrasts of various test

colors, 𝜿 (t, b), as well as the retinal eccentricity, 4 ∈ R+, at which a colored stimulus is

displayed [Hansen et al., 2009; Krauskopf and Karl, 1992]. We leverage our user study

data from Section 3.1 to learn the relationship

Φ : (𝜿 , 4) ↦→ 𝜶 (3.4)

where 𝜿 ∈ R2 are the 𝑅𝐺 and 𝐵𝑌 coordinates of the test color in 𝐷𝐾𝐿 space computed

using Equations (2.8) and (3.1). Specifically, we use our data to optimize a shallow neural

network, which estimates the discrimination thresholds, using least-squares regression:

�̂� = argmin
Φ

∥Φ(𝜿 , 4) − 𝜶 ∥22. (3.5)

The 𝑅2 value of the regression is 0.58 (adjusted 𝑅2 value of 0.51), indicated an accept-

able regression accuracy. Note that our raw data from Section 3.1 is intentionally

pre-processed as described in detail in Section 3.3.4. Briefly, we aim to cover more

conservative thresholds that are generalizable to broad users instead of an łaverage fitž.

Neural Network Architecture. We chose the Radial Basis Function Neural Network

(RBFNN) with a sigmoid output layer to ensure local smoothness, as well as a positive,
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localized output range. Mathematically, the network is summarized as

Φ(𝜿 , 4) = 𝜼 ⊙ (
(
𝑁∑︁
𝑗=1

𝝀 𝑗𝜌

(
[
𝜿

4

]
− c 𝑗


2

, 𝜎 𝑗

)
+ 𝝂 𝑗

)
, (3.6)

where ⊙ is the term-wise multiplication operator. The RBFNN takes the input, and

computes the weights of the effect each of the 𝑁 nodes of the latent representation have

on the input. It does so by applying a Gaussian Radial Basis function, 𝜌 , centered at c 𝑗

with std of 𝜎 𝑗 , for each node, 𝑗 . The weights of each node is scaled by a scaling constant

𝝀 𝑗 , incremented by the linear bias 𝝂 𝑗 , summed up, and passed to the sigmoid function

( and mutliplied by a scaling factor 𝜼 to produce the final prediction. The trainable

parameters of this network are the centres, c 𝑗 , sizes, 𝜎 𝑗 of the radial bases, as well as the

final scaling factors 𝝀 𝑗 , and linear biases 𝝂 𝑗 . 𝜼 is a normalization constant and chosen

to be the maximum possible value of contrasts within the capability of the display used

in our work, and hence does not change. For our work we keep the number of nodes

𝑁 = 5 low to maintain smoothness of the outputs. Please refer to our source code for

more details on the model specifications.

Ellipse re-parameterization. Since the adaptation color, b, is the same for all vari-

ables in Equation (3.3), we simplify the function by re-parameterization as 𝑎𝑖 = U𝑖𝑏𝐴𝑐ℎ

for 𝑖 ∈ {𝑅𝐺, 𝐵𝑌 }:

E(x; t, a) =
∑︁

𝑖={𝑅𝐺,𝐵𝑌 }

(
G𝑖 − 𝑡𝑖
𝑎𝑖

)2
− 1. (3.7)

While the original formulation in Equation (3.3) relates the ellipse to in terms of

color contrast, and are ultimately the variables used to regress the model, as we’ll see

in Section 3.3.2, it’s helpful to reformulate the model with respect to raw color space



52

intensity values: x − t, as well as the new parameter, a, are both expressed in terms

of 𝐷𝐾𝐿 intensity values. Ultimately, the obtained model is visualized in Figures 3.4a

and 3.4b.

3.3.2 Power Model for Display Illumination

In this section we derive a computation model that correlates an OLED’s power con-

sumption with the pixel color. The display power is modeled as the sum of the LED

power, which consists of the powers of its three sub-pixels, and the power of the periph-

eral circuitry (e.g., the thin-film transistors) [Huang et al., 2020]. It is known that the

power of an OLED sub-pixel is roughly proportional to its current, which is proportional

to the numerical value of the corresponding channel [Tsujimura, 2017]. Thus, given the

RGB value of the three sub-pixels, x3𝑖B? ∈ disp-RGB (i.e., the pixel value in the display

native color space), its total power consumption is

P =
©«

∑︁
𝑖={1,2,3}

?𝑖G𝑖
ª®¬
+ ?𝑐𝑖A𝑐 = p𝑇3𝑖B?x3𝑖B? + ?𝑐𝑖A𝑐, (3.8)

where p3𝑖B? ∈ R
3 is the vector of unit powers of each sub-pixel, and ?𝑐𝑖A𝑐 ∈ R is the

static power consumption (consumed by the peripheral circuits) when all the pixels are

black, i.e., the LEDs do not emit light and, thus, do not consume power.

In most computer graphics applications, it is impractical to use the display’s native

color space because it varies depending on the manufacturer specifications, and could be

unknown. Color-spaces that are commonly used, such as (linear) sRGB, can transform

to a display’s native color-space via some linear transformation, 𝑀 ∈ R3×3. Without

loss of generality, using this transformation, we can rewrite Equation (3.8) in terms of
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the (linear) sRGB pixels as

P (xBA𝑔𝑏) = p𝑇3𝑖B?𝑀BA𝑔𝑏23𝑖B?xBA𝑔𝑏 + ?𝑐𝑖A𝑐

= p𝑇BA𝑔𝑏xBA𝑔𝑏 + ?𝑐𝑖A𝑐,
(3.9)

where 𝑀BA𝑔𝑏23𝑖B? is the transformation matrix from (linear) sRGB’s color-space to the

display’s, and xBA𝑔𝑏 ∈ sRGB denotes the pixel color in linear sRGB space. For convenience,

we define p𝑇
BA𝑔𝑏

= p𝑇
3𝑖B?

𝑀BA𝑔𝑏23𝑖B? , which intuitively denotes the power consumption of

the three display sub-pixels under unit sRGB simuli.

pBA𝑔𝑏 depends on the specification of a particular display. In our work, we study an

OLED display module from Wisecoco that has two 1080×1200 displays, as described in

Section 3.2. Critically, our methodology is not unique to the specific display at study

and, thus, can be extended to build power models for any other three-primary display.

Power model regression. To build an analytical power model, we must find the

parameter, pBA𝑔𝑏 . We do so by physically measuring the power consumption of 52

randomly sampled colors in the sRGB space, including the eight colors that correspond

to the eight vertices of the sRGB color cube, as described in Section 3.2, and solving an

over-determined linear system,

P (𝑐𝑜𝑙𝑜A ) = p𝑇BA𝑔𝑏x
(𝑐𝑜𝑙𝑜A )
BA𝑔𝑏

+ ?𝑐𝑖A𝑐, (3.10)

where 𝑐𝑜𝑙𝑜A is the 52 sampled colors, via the classic linear least squares method. Fig-

ure 3.2c shows the measured power of these sampled colors (𝑦-axis) and the regressed

model outputs (G-axis). The mean relative error of the regression is 0.996%, indicating

an accurate model.
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3.3.3 Optimizing Display Energy Consumption under Perceptual

Constraints

Finally, using Equation (3.2) and Equation (3.9) we can minimize the power consumption

function of a display, P (x), while constrained within the perceptual limits set by E(x).

Qualitatively, we notice that the power function is a linear function of the input, x, so

the minimizing power will be on the surface of the discriminative threshold ellipse (as

opposed to its interior). Notice that in this optimization problem, it is more convenient

to use 𝐷𝐾𝐿 intensities instead of color contrasts (cf. Equations (3.3) and (3.7)).

Formally, we define the optimization process as:

x∗3𝑘𝑙 = argmin
x𝑑𝑘𝑙

P(𝑀3𝑘𝑙2BA𝑔𝑏x3𝑘𝑙 )

subject to: E(x3𝑘𝑙 ; t3𝑘𝑙 , a = 𝜶𝑏𝐴𝑐ℎ) = 0,

(3.11)

where the original color of the pixel is t and, the adaptation color of the display is b. In

our work we choose b to be equal to a color with a chromaticity equal to the CIE D65

Standard Illuminant (i.e., the reference white in the sRGB color space) and a luminance

equal to the luminance of the test pixel t. While the choice of adaptation color is an

interesting question to explore, it is beyond the scope of this work and is left as future

work.

Due to the convexity of both the cost and constraint functions, we can apply the

method of Lagrange multipliers to find the output color, x∗
BA𝑔𝑏

, which minimizes the
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Figure 3.5: Closed-form derivation of optimal chromaticity. Level sets of the power function,

P, and the boundary of the constraint E (x) = 0 are visualized in red and blue, respectively.

Constrained optimizations of convex functions can be determined in closed form via the method

of Lagrange multipliers. Specifically, the optimal chromaticity, x∗, which is guaranteed to be at

the boundary of the constraint surface due to convexity can be found by observing that the

gradient of both the constraint and optimization functions must be collinear (see red and blue

vectors).

total power consumption in closed form:

x∗BA𝑔𝑏 =𝑀3𝑘𝑙2BA𝑔𝑏
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. (3.12)

Figure 3.5 visually illustrates how this optimal color is found using the derivatives of E,

and P. Refer to Section 3.A for the derivation of the above result.

3.3.4 Implementation Details

Perception Study Data Pre-processing. We take two steps to pre-process the

perception study data. Both steps are meant to keep the model’s threshold estimation

conservative, which is necessary for two reasons. First, there are natural variances

across participants (Section 3.1.2) and, thus, a conservative estimation allows our model

to generalize to large populations. Second, our model is built to modulate the displayed



56

colors to preserve the visual fidelity in active viewing, which we hypothesize to have a

lower threshold than that in discriminative tasks.

First, we use the smallest thresholds across participants, instead of an average fit.

Second, we observed small asymmetries in the collected thresholds, and we confirmed

that this is also the case in Krauskopf and Karl [1992]. Wemade the engineering decision

to keep our model’s thresholds more conservative; thus each threshold is chosen to

be the narrower one from the two thresholds approached from opposing sides along a

DKL axis. That is, given a threshold approached from the positive 𝑅𝐺 side, U+𝑅𝐺 , and

one from the negative 𝑅𝐺 side, U−𝑅𝐺 , the discrimination threshold we pick for model

regression is:

U𝑅𝐺 =min(U+𝑅𝐺 , U−𝑅𝐺 ), (3.13)

and similarly for the 𝐵𝑌 axis.

Eccentricity Extrapolation. In our perceptual model regression, we restricted the

range of valid input eccentricities to be between 10◦ and 35◦ because we had only

measured discriminative thresholds within this range of eccentricities. We avoided

color-shifting content at eccentricities < 10◦ due to the low power-saving payoffs for

foveal and para-foveal regions. Meanwhile, eccentricities > 35◦ were clamped down to

35◦ as a conservative estimate.

Shader. We implement a post-processing image-space shader in the Unity ShaderLab

language to compute per-pixel power-minimizing color. Figure 3.6 outlines the pseu-

docode of our shader. We tested our shader on the HTC Vive Pro Eye (relevant specs

shown below) powered by an NVIDIA RTX3090 GPU, and observed that processing
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Table 3.1: HTC Vive Pro Eye Specifications.

Feature Specification
Display Resolution 1440 × 1600 pixels per eye
Display Refresh-rate 90 Hz
Peak Luminance 143 cd/m2

Eye-tracker Accuracy 0.5◦ − 1.1◦

Eye-tracker Frequency 120 Hz.

each frame takes less than 11 ms, which ensures no loss of frames in the displays.

3.4 Power Optimizer Evaluation

In this section we evaluate the performance and applicability of our model. In Sec-

tion 3.4.1, we first conduct a psychophysical experiment to assess the perceptual fidelity

between our method and an alternative luminance-based power reduction approach.

The experiment design follows previous literature [Cohen et al., 2020]. Then, in Sec-

tion 3.4.2, we measure the model’s generic benefits in broad applications by further

analyzing the display power saving ratio with a large scale natural image dataset,

ImageNet.

3.4.1 Psychophysical Study for Perceptual Quality

Motivated by the experiment of Cohen et al. [2020], we conduct a psychophysical

user study to measure participant-experienced fidelity deterioration, as well as the

corresponding power-saving level during active and real-world viewing. łActive and

real-worldž is notably a condition where participants may freely rotate their head/eyes

and naturally investigate an immersive scene.
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1: pospixel = GetPixelPos()
2: posgaze = GetGazePos()
3: tsrgb = SampleTexture(MainTex, pospixel)
4: 4 = GetEccentricity(posgaze, pospixel)
5: if 4 < eccmin then

6: return tsrgb
7: else if 4 > eccmax then

8: 4 = eccmax

9: end if

10: tdkl =𝑀srgb2dkltsrgb
11: lum = tdkl.x
12: ⊲ Adaptation color
13: bdkl =𝑀srgb2dkl [lum, lum, lum]

𝑇

14: 𝜿 = (tdkl − bdkl)/bdkl.G
15: input =

[
𝜿

4

]
{Model input}

16: Init rbf[5], linear[2] {Model output}
17: ⊲ Lines 14-22: RBFNN from Equation (3.6)
18: for 𝑖 in [0, 5) do
19: rbf𝑖 ← 𝜌 (∥input − c𝑖 ∥2 , 𝜎𝑖)
20: end for

21: ⊲ ⊙: element-wise multiply
22: for 𝑖 in [0, 2) do
23: linear𝑖 ← 𝝀𝑖 ⊙ rbf + 𝝂𝑖
24: end for

25: 𝜶 ← 𝜼 ⊙ SigmoidLinear

26: a = 𝜶 ⊙ bidkl
27: ⊲ Compute power-optimal color
28: p = GetPowerModelCoeffs()
29: x∗dkl = tdkl + a2 ⊙ p 1√∑

𝑖 𝑎
2
𝑖 ?

2
𝑖

30: return𝑀dkl2srgbx
∗
dkl

Figure 3.6: Shader implementation pseudocode. The shader routine optimizes an input color into

the optimized color as described by our method from Section 3.3.
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Figure 3.7: User study stimuli and results. (b) and (c) show the results of applying the two gaze-

contingent shading conditions OUR and LUM to an example frame (a) in the video sequence

stimuli, with the dashed circles indicating the user’s gaze. (d)We gradually increase the strength

of the filter over the course of 10 seconds (see Section 3.4.1 for details). (e) shows the percentage

of trials where users identified łartifactsž with error bars indicating Standard Error Mean (SEM).

Across the 6 scenes,OUR exhibits significantly lower values than LUM, evidencing our method’s

benefit in preserving perceptual fidelity. (f) Physically measurements of the dynamic display

power consumed by the OLED panels for each scene using each rendering method are shown.

Power consumption of the peripheral circuitry are excluded. The naive LUM and OUR both

achieve comparable power savings compared to the original.
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Setup and participants. We recruited 13 participants (ages 21-32, 3 female). None of

the participants were aware of the research, the hypothesis, or the number of conditions.

All participants have normal or corrected-to-normal vision. We used the same hardware

setup as our preliminary user study in Section 3.1. Before each experiment, we ran a

five-point eye-tracking calibration for each participant.

Stimuli and conditions. The stimuli were 6 panoramic video sequences as shown

in Figure 3.8. For broader coverage, the tested scenes contain natural/synthetic, static/-

dynamic, bright/dark, and indoor/outdoor content.

We studied the perceptual quality by applying two gaze-contingent and power-

saving shading approaches to the scenes: a baseline luminance-modulated shader,

LUM; and the shader with our chromaticity modulation method, OUR (Section 3.3.4).

Specifically, in LUM, we applied a constant scaling factor to all peripheral (eccentricity

> 10◦) pixels’ colors. That is, LUM can be understood as a gaze-contingent version of

the łpower-saving modež on mobile devices. The scaling factor was determined in such

a way that the power saving (estimated using the power model) of LUM is similar to

that of OUR. An example frame of the original stimulus, OUR, and LUM are shown in

Figure 3.7.

Similar to Cohen et al. [2020], we temporally inserted one of the two shaders to

the original stimulus during each trial. More formally, let 𝐼𝑜 be the original video and

𝐼? be the power optimized version. Then starting at timestamp 𝜏𝑜 = 5s, we linearly

interpolate (i.e., 𝑙4A?) between 𝐼𝑜 and 𝐼? over a course of 10 seconds. At 𝜏? = 15s, the

transition completes and the power optimized video is played henceforth. That is,

𝐼 (𝜏) = 𝑙4A?
(
𝐼𝑜 , 𝐼?,

𝜏 − 𝜏𝑜
𝜏? − 𝜏𝑜

)
(3.14)
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Dumbo Fortnite

monkeys office

skyline Thailand

Figure 3.8: Panoramic Video Scenes. Representative panoramic frames captured from 360 degree

monoscopic video scenes are used in the evaluation user study described in Section 3.4.1. Image

credits: Dumbo, monkeys, skyline by Humaneyes Technologies, office by Rabbitt Design, Thailand

by VR Gorilla, and Fortnite by AmiramiX.



62

The process is illustrated in Figure 3.7d. Note that the temporal insertion also implicitly

compares the original frame with each of the two power-saved conditions.

Tasks. Our experiment consisted of 24 trials (6 scenes × 2 condition × 2 repetitions),

lasting approximately 15 minutes for each participant. Before the experiment started,

we first displayed 2 trial runs to familiarize the participant with the setup. Afterwards,

six 20-second video sequences (with representative frames displayed in Figure 3.8) were

shown to the participant in a counter-balanced randomized order.

During each trial, the participant was instructed to perform a scene-specific task,

such as łcount the number of chairsž to ensure they were actively viewing the scene.

After each trial, the participant was instructed to answer both the scene-specific task and

a two-alternative forced choice (2AFC, similar to Cohen et al. [2020]) question łdid you

notice any visual artifacts?ž. Before beginning the experiment, we show the participants

static frames from the łskylinež video as visual examples of łartifactž stimuli, including

one original frame and the two corresponding conditions, OUR, and LUM. The example

images were displayed on a computer monitor (as opposed to the VR headset); thus, the

participants’ retinal image was significantly different from the stimuli shown during

the study. This is to ensure that the participants are not biased when shown artifacts.

Metrics and results. We use the percentage of trials where participants noticed

artifacts as the metric of perceptual quality. Lower values indicate better quality, i.e.,

less noticeable visual modulation. Figure 3.7e plots the user-reported values of each

scene and each condition. As visualized in Figure 3.7e, the average percentage of

observed artifacts in LUM is 63.5 ± 9.4% (STE) and in OUR is 16.7 ± 7.3%. The lowest

percentage of observed artifacts in scenes with OUR applied occurred in the monkeys

scene, a scene with large amounts of green, whereas the highest percentage occurred in
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the office scene, a very bright and uniformly colored scene relative to the other scenes.

A one-way repeated ANOVA analysis showed that the shading condition (OUR vs.

LUM) has a significant effect on the perceptual quality (𝐹(1,24) = 18.42, ? = .00025).

As plotted in Figure 3.7f, we also measured the display power consumption of each

power-saved shading condition for each scene. The average savings between OUR and

LUM are similar (20.8±1.2% vs. 18.6±1.4% (95% confidence)). OUR exhibits the highest

power saving in the skyline scene, due to higher relative uniform distribution of blue

colors.

Discussion. The results reveal our methodOUR’s significant out-performance on pre-

serving perceptual quality over a gaze-contingent luminance-reduction-based approach

(LUM), even though both conditions achieve a comparably similar power-saving scale.

Note that, under the same power, there are infinite ways of constructing LUM, including

smoothing the edge but darkening the farther periphery. Our implementation of LUM is

partially inspired by Pöppel and Harvey [1973], which suggests that human luminance

change detection thresholds remain relatively constant beyond 10◦ eccentricity. The

design, however, may not be perceptually optimal. Therefore, studying and modeling

the luminance-induced effects may not only provide a stronger baseline condition, but

improve our model that is currently restricted to colors only.

Our perceptual fidelity and power-saving capabilities are also content-based. For

example, we notice high power savings in the łofficež scene, but the average % of

observed artifacts is higher than other scenes. This is hypothetically because the scene

has a significantly higher brightness compared to the others. On the other hand, the

łmonkeyž scene has relatively high density of green colors, and thus has the lowest

perceived average % of artifacts. The observations motivate us to investigate, in the
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future, the chromaticity-luminance joint effect (Section 3.4.3) beyond the first model

that guides color-perception-aware VR power optimization.

While detection tasks are commonly leveraged in the foveated rendering literature

[Patney et al., 2016; Sun et al., 2017], we opted to validate our gaze contingent filter

with active and natural viewing, similar to Cohen et al. [2020]. The design choice is two-

fold. First, we attempt to simulate the conditions of real-world VR applications where

the users, with various tasks in mind, make head and eye movements to explore the

environment. Examples include gaming and video-watching. Second, prior literature

suggests unequal color detection and discrimination thresholds. Vingrys and Mahon

[1998] discovered that chromatic sensitivity for detection is significantly greater than

for discrimination. However, by leveraging our model and shader in this experiment,

we verify our hypothesis that our color sensitivity during natural and active vision is,

in fact, lower than that of discrimination, and thus enable the method’s applicability

for broad VR scenarios.

3.4.2 Measuring Power-Saving Capability for Broad Content

In our psychophysical study Section 3.4.1, we observe that the possible power savings

are dependent on the displayed content. For example, colors that are highly saturated

have little room in their equi-luminant plane that is within the bounds of the sRGB

cube. Therefore, they have less power saving potential as any potential power-saving

chromaticity shifts are clipped by the sRGB bounds. To study how much power can be

saved in practical applications where users may observe arbitrary imagery, we conduct

an objective evaluation by applying our method to a large sample of the ImageNet

dataset [Russakovsky et al., 2015]. We then measure the distribution of power savings

using our power model.
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Figure 3.9: Power Savings Estimation. We estimate potential power savings when our model

is applied to natural images sampled from ImageNet [Russakovsky et al., 2015]. The amount

of power saved is content dependent. Images in (a) and (b) are grouped based on how much

power-savings were achievable (top to bottom each row saves better than 99.9%, 55%, 45%, 0.1%

of the entire dataset considered; bottom row are the worst 0.1% performers). (c) We show the

distribution of potential power savings in this evaluation, and annotate the percent power

saved for 95% of images to be within 9.1 − 23.5%.

Setup. We simulate how an image would be observed in a VR setting by resizing

the image to be displayed at 90◦ field-of-view, and randomly sample a location within

the image and select that as the gaze location. The randomization of the gaze location

was applied to prevent bias in the power estimation. Specifically, we observed that

many images in ImageNet have a foreground object centered on the image; selecting

random gaze locations allows us to include images where the foreground objects will

sometimes have the filter applied to them. We repeat this process for 10% (randomly

sampled) of the ImageNet dataset, totaling in over ∼ 120𝑘 images, to collect original

and power-optimized image pairs.

Metrics. For each image pair, we measure the estimated power consumption using

our model from Section 3.3.2, and compute the relative decrease in power consumption

by applying our filter with respect to the ground-truth condition.
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Results. We observe that the mean display power saving recorded across the entire

dataset is 13.9%, and guarantee 9.1 − 23.5% savings with P95 confidence. Please refer to

Figure 3.9c for the detailed histogram of the estimated power savings. We visualize a

small sample of the images we applied the filter to in Figures 3.9a and 3.9b.

Discussion. Sample images from different percentiles of power-saving as shown

in Figure 3.9 show that images with the highest power savings are commonly bright

and/or blueish scenes, and vice versa. Intuitively, bright scenes provide larger percentage

changes in LED luminance, and thus unlock larger space for power-saving. Since blue

colors on the LED consume the most power, as demonstrated in Section 3.2, images rich

in blue/green colors can be optimized most effectively. Meanwhile, images which are

already saturated with red colors cannot be optimized for higher power-saving because

the space of power-wise łcheaperž colors is narrower.

3.4.3 Limitations

Active vision vs. discrimination vs. detection. While our evaluation on active/-

natural viewing tasks in Section 3.4.1 is representative of real-world VR scenarios

[Cohen et al., 2020], our initial perceptual data are collected using a more conservative

discrimination task. It is also common in the foveated rendering literature to evaluate

using detection tasks [Patney et al., 2016; Sun et al., 2017]. Our conducted preliminary

detection-based experiments, which showed that sensitivity to color changes in detec-

tion tasks is significantly greater that that in discrimination tasks, are consistent with

prior work [Vingrys and Mahon, 1998].

An exciting future direction is, thus, to investigate an adaptive model that accommo-

dates for color sensitivity under all three tasks (detection, discrimination, active/natural
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viewing). That way, our color modulation algorithm can be dynamically configured

according to the specific viewing scenario of a VR user.

Perceptual model. Our current perceptual model is constructed with respect to

per-pixel colors. An interesting future extension is to consider inter-pixel, potentially

higher-dimensional, features such as spatial frequency and local contrast. Performing

these analyses (e.g., frequency domain analyses as in Tursun et al. [2019]), however,

increases the computational overhead. How to best balance the level of details in

perceptual analysis and display power saving is an open question we leave to future

work.

Luminance adjustment. In our work, we model and modulate pixel chromatic-

ity to reduce display power consumption while preserving luminance. This design

choice reduces the dimension of our perceptual model and, thus, yields a convex con-

strained optimization problem with a closed-form solution. Investigating the luminance-

chromaticity joint modulation is an interesting future research direction that would

conceivably lead to higher power savings [Vingrys and Mahon, 1998].

Jointly adjusting luminance and chromaticity, nevertheless, comes with a few chal-

lenges. First, it would require sampling a new dimension in constructing the perceptual

model. Second, prior literature suggests the weak eccentricity-dependent effect [Metha

et al., 1994] in detecting and discriminating absolute luminance. Finally, the perceptual

level sets, when considering the luminance dimension, might not be convex, which

might complicate the optimization, cause false local minima, and reduce the shading

speed.
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Color Temperature Adaptation. Another interesting direction for future research is

to leverage chromatic adaptation [Fairchild, 2013] to reduce display power by adjusting

the color temperature of the display white point. The advantage of this approach is

that it is not gaze-contingent: it can potentially reduce the power of the entire display

without requiring eye tracking. Adaptation to display color has been long investigated

[Fairchild and Reniff, 1995; Peng et al., 2021], but such studies in VR displays are

relatively new and rare [Chinazzo et al., 2021] and lack a comprehensive computational

model. Note that the chromatic adaptation benefits are additive: our model can be seen

as a sub-space initial attempt (by exploiting spatial color perception) under a given

adaptation state.

Display Persistence. VR displays usually have low persistence to reduce motion

blur [Hainich and Bimber, 2016]. A common solution is to hold a frame for only a short

period of time during each display refresh2. As a consequence, the display power is

relatively low to begin with (compared to displaying a frame throughout a refresh cycle).

Nevertheless, our work demonstrates significant display power saving opportunities

even with reduced displayed times. In addition, reducing the display period leads to

low average luminance, which limits the applicability of a luminance-based approach

to reduce power Ð another reason we choose to maintain the luminance.

Implementation. There is room for improving the speed of our shader, which cur-

rently is bottlenecked by the atomic for-loop. Deferred shading techniques may shed

light on alleviating the bottleneck. One promising solution is to evaluate the optimiza-

tion problem (Equation (3.11)) offline (e.g., sampling colors and eccentricies) and save

the results as a 3D texture, which the shader simply looks up at rendering time.

2https://developers.google.com/vr/discover/fundamentals#display_persistence

https://developers.google.com/vr/discover/fundamentals#display_persistence
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Due to the tight integration of the display, computation module, and battery in

commercial AR/VR devices, our display power measurement has to be done on a 3rd

party display module that has the identical aspect ratio of the VR device we use for

perceptual studies. Investigating physical means to measure the exact display power as

in an AR/VR device would reveal the real-world energy savings concerning the battery

equipped with the device. It would also be interesting to see how our perception-

conserving color modulation idea can be applied to smartphone displays, which have

much narrower field-of-views.

Follow-upWork. Since our initial publication of this work, our perceptual model has

been leveraged to implement a frame-buffer compression system that alleviates DRAM

traffic by up to 67% and outperforms existin frame-buffer compression mechanisms by

up to 20%, while preserving the perceptual fidelity of the displayed content. While such

a compression scheme is numerically lossy, our perceptual model assists in ensuring

that the color artifacts generated caused perceptually lossless results [Ujjainkar et al.,

2024].
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Subject ID Eccentricity = 10◦ Eccentricity = 25◦ Eccentricity = 35◦

subject_01

𝐿
−
𝑀

( − (𝐿 +𝑀)

!
−
"

( − (! +")
!
−
"

( − (! +")

subject_02

!
−
"

( − (! +")

!
−
"

( − (! +")

!
−
"

( − (! +")

subject_03
!
−
"

( − (! +")

!
−
"

( − (! +")

!
−
"

( − (! +")

subject_04

!
−
"

( − (! +")

!
−
"

( − (! +")

!
−
"

( − (! +")

subject_05

!
−
"

( − (! +")

!
−
"

( − (! +")

!
−
"

( − (! +")

Table 3.2: Pilot Perceptual Study Threshold Data. See Figure 3.1 for plot description.
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3.A Optimal Color Modulation Derivation

Given an ellipse constraint function



G𝐴𝑐ℎ = 𝑡𝐴𝑐ℎ

E (x) =
(
G𝑅𝐺−𝑡𝑅𝐺
𝑎𝑅𝐺

)2
+

(
G𝐵𝑌−𝑡𝐵𝑌
𝑎𝐵𝑌

)2
− 1 = 0,

(3.15)

and a power cost function

P(x) = ?𝐴𝑐ℎG𝐴𝑐ℎ + ?𝑅𝐺G𝑅𝐺 + ?𝐵𝑌G𝐵𝑌 + ?𝑐𝑖A𝑐, (3.16)

we may solve the power optimizing x∗ via the method of Lagrange multipliers.

First, we notice that G𝐴𝑐ℎ should not change. Intuitively, this effectively reduces

the dimensionality of the optimization onto the plane G𝐴𝑐ℎ = 𝑡𝐴𝑐ℎ. Formally, we may

rewrite the constraint and power functions in terms of a 2-dimensional variable ®𝑦 =

(𝑦𝑅𝐺 , 𝑦𝐵𝑌 ) = (G𝑅𝐺 , G𝐵𝑌 ):

E(®𝑦) =
(
𝑦𝑅𝐺 − 𝑡𝑅𝐺
𝑎𝑅𝐺

)2
+

(
𝑦𝐵𝑌 − 𝑡𝐵𝑌
𝑎𝐵𝑌

)2
− 1 = 0, (3.17)

and

P(®𝑦) = ?𝑅𝐺𝑦𝐵𝑌 + ?𝐵𝑌𝑦𝐵𝑌 + 𝑐𝑜𝑛B𝑡 . (3.18)

The minimizing vector ®𝑦∗ satisfies the condition that the gradients of E, and P are



72

co-linear. So the system of equations we need to solve for ®𝑦∗ is



∇E ( ®𝑦∗) = 𝜙∇P(®𝑦∗)

E(®𝑦∗) = 0,

(3.19)

for some scalar constant 𝜙 .

Computing the gradients, we get




2
𝑎𝑅𝐺

𝑦∗
𝑅𝐺
−𝑡𝑅𝐺
𝑎𝑅𝐺

= 𝜙?𝑅𝐺

2
𝑎𝐵𝑌

𝑦∗
𝐵𝑌
−𝑡𝐵𝑌
𝑎𝐵𝑌

= 𝜙?𝐵𝑌(
𝑦∗
𝑅𝐺
−𝑡𝑅𝐺
𝑎𝑅𝐺

)2
+

(
𝑦∗
𝐵𝑌
−𝑡𝐵𝑌
𝑎𝐵𝑌

)2
− 1 = 0.

(3.20)

Finally, we solve for ®𝑦∗ using this system of equations to get the optimal color, ®G∗:

G∗𝐴𝑐ℎ = 𝑡𝐴𝑐ℎ

G∗𝑅𝐺 =

?𝑅𝐺𝑎
2
𝑅𝐺√︃

?2
𝑅𝐺
𝑎2
𝑅𝐺
+ ?2

𝐵𝑌
𝑎2
𝐵𝑌

G∗𝐵𝑌 =

?𝐵𝑌𝑎
2
𝐵𝑌√︃

?2
𝑅𝐺
𝑎2
𝑅𝐺
+ ?2

𝐵𝑌
𝑎2
𝐵𝑌

.

(3.21)
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Chapter 4

Motion Processing Error Correction

When driving on the road, we must accurately estimate and respond to the motion of

various objects in a dynamic environment, including other vehicles and pedestrians.

How users perceive object motion is also a universal metric in computer graphics

applications, such as guiding camera trajectories in video playback [Kang and Cho,

2019], controlling game difficulties [Caroux et al., 2013], compressing videos [Furht

et al., 2012], and reducing simulator sickness [Hu et al., 2019; Park et al., 2022]. In these

real-world scenarios, both the objects and we ourselves may move within dynamic 3D

environments. In such situations, extracting scene-relative object motion solely from

the mixed and anisotropic optical flow on the screen can lead to misinterpretations due

to its ambiguous nature [Dokka et al., 2019]. Therefore, we ask, łHow accurately can

we perceive moving objects in scenes featuring different motion dynamics?ž.

In Section 2.3.3 we discussed that prior studies have observed that perceptual errors

can occur when estimating object movements during self-movements [Dokka et al.,

2019; Xing and Saunders, 2022] and in 3D scenes [Cornilleau-Pérès and Gielen, 1996;

Van den Berg and Brenner, 1994a]. However, to provide design guidance in downstream
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graphics applications, a quantified understanding of the variability of these errors across

different scene dynamics is still missing. Filling this knowledge gap poses a remarkable

challenge due to the need of sampling a diverse range of conditions, conducting repeated

experiments, and involving a wide population to account for variations in individuals’

sensory and perceptual variances [Xing and Saunders, 2022].

In this chapter, we measure and analyze the errors in our visual perception of screen-

displayed object motion, particularly in relation to concurrent global scene movements

which result in dynamic environments. To this aim, we present a series of large-scale

psychophysical studies comprising over 10,000 trials, which correlate object motion

perception and scene dynamics characterized by scene movements and content depths.

We employ and validate a crowdsourcing approach to tackle the unique challenges

posed by the need for large sample sizes in both population and trial repetitions.

Additionally, we also showcase how the model can guide animation and game

design to reduce perceived errors in object motion by viewers. We hope this work

will contribute to a new frontier in the computer graphics community, focusing on

understanding the visual performance limitations introduced by displays and exploring

design strategies to compensate for them. Source code and data for this chapter’s

contents are available at www.github.com/NYU-ICL/motion-estimation.

4.1 Studying Object Motion Perception

In a dynamic scenario, a target object moves in the scene ( ®𝑤𝑡 ), which simultaneously

appears to be moving to the observer who is also in motion (®𝑣B ), as visualized in Fig-

ure 4.1a. Figure 4.1b (top) illustrates that an unbiased łperfectž observer can accurately

understand ®𝑤𝑡 and ®𝑣B by analyzing their vector combination, ®𝑣𝑡 , as it appears on-screen.

www.github.com/NYU-ICL/motion-estimation
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Figure 4.1: Illustration and analysis of biased perception during self-motion. (a) Accurate recon-

struction of the scene-relative target motion ®𝑤𝑡 , requires observers to subtract their percept of

scene motion ®𝑣𝑠 , from the observed on-screen target motion ®𝑣𝑡 . The divergence point of optical

flow fields due to scene and target motions, a.k.a., FOE, denoted as circles at the horizon. (b)

Unbiased łperfectž observers can perfectly estimate the scene heading, 𝜑𝑠 , to determine the

direction of scene-relative target motion. Observer L(eft)/R(right) responses are annotated

inside the FOE circle for each target motion condition. Biased human observers make judgment

errors due to mis-estimation of the scene heading, 𝜑 ′
𝑠 ≤ 𝜑𝑠 . Biased estimations denoted as

dashed arrows. (c) The psychometric curve visualizes the probability of observers L/R responses

for various target motion conditions. The curve indicates that when the target moves through

the scene at a speed of 0.15 m/s to the right (equivalent to an observed target heading of

𝜑𝑡 = 6.2◦) observers believe the object to not be moving sideways, on average. Data used for

curve fitting is shown as a scatter plot (with SEM error bars).
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3D
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(Screen-relative)
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(“t” for target, “s” for scene)

Estimated Camera-Space Velocity
of the Target Object

Figure 4.2: Motion-related variable notation used throughout Sections 4.1 and 4.3 and Figs. 4.1

and 4.8.

Refer to Figure 4.2 for a reference to all target and scene motion-related symbols used

throughout the manuscript. However, this ideal scenario may not reflect reality. As

depicted in Figure 4.1b (bottom), we are imperfect in estimating either motion due to the

decomposition ambiguity [Xie et al., 2020b; Xing and Saunders, 2022]. First, depending

on scene dynamics, our perception of scene and target heading often exhibits a łcentral

biasž, meaning an under-estimation [Xie et al., 2020b; Xing and Saunders, 2022]. Second,

when observers lack visual cues to determine the target distance, the ambiguous optical

flow further exacerbates the mis-estimation [Van den Berg and Brenner, 1994a]. For

example, in Figure 4.1a, it is ambiguous whether the ball is large and moving at a

farther depth or small and moving at a closer depth. Therefore, we study (Section 4.1.1),

quantify, and model (Section 4.1.3) the perceptual bias scale of target motions under

various scene dynamics and content.

4.1.1 Experimental Design

Participants. We recruited subjects for the study through the crowdsourcing platform

Prolific. A strict screening protocol was enforced to mitigate potential confounds
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arising from task misinterpretation and attention lapses, ensuring high-quality data

(see Filtering). As such, we consider the data from 𝑛 = 38 subjects (ages 20 − 56, 21

male) screened from an initial pool of 78. All study protocols were approved by an

institutional review board (IRB), and subjects were compensated at a rate of $15/ℎ.

Refer to the supplementary video for animated visualizations of all study procedures.

Stimuli and procedure. The study was conducted via a web-based application on

a computer screen. A screen calibration procedure ensured that all subjects viewed

the stimuli at approximately 50◦ fov. After calibration, they received a text-based

introduction to the stimuli and task.

Subjects initiated each trial by pressing a button. As shown in Figure 4.3a, they

were presented a fixation cross at the screen center for .5 s at the beginning of each

trial and instructed to maintain their gaze stationary. After the cross disappeared, a 2 s

video (recorded at 60 fps) was shown. Initially, a flat ground surface with Perlin noise

texture is visible, conveying forward scene motion with variable speed, 𝑣B , and heading

direction, 𝜑B , to an observer at variable height ℎB . The ground texture was chosen

to avoid tuning to specific spatial frequency ranges, and instead incorporate a broad

spectrum of frequencies, similar to Xing and Saunders [2022]. After 1 s, a yellow probe

(target object) was introduced at a height, ℎ𝑡 , positioned 6 m in front of the observer at

5◦ eccentricity below fixation (ℎB − ℎ𝑡 = .52 m). The target object then moved either

left or right relative to the scene at various speeds,𝑤𝑡 , for the rest of the clip (1 s). The

object remained visible throughout all trials.

At the end of the video, subjects were prompted to indicate, via button press, whether

the probe was moving left or right relative to the scene. If they didn’t respond after

10 s, the trial expired and prompted a screening trial before retrying. No feedback was
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provided during trials to prevent learning effects.

Prior to the study, subjects participated in an interactive training session to famil-

iarize themselves with the task and interfaces. The session comprised eight unique

trials of the same protocol. During training, subjects were provided with feedback on

their performance after each trial and shown a top-down visualization (see Figure 4.3c).

Subjects were required to respond correctly to all training trials before being allowed

to progress. Training conditions were selected to prevent external bias (see Conditions).

Metrics. The procedural goal of the study was to determine the threshold heading of

the target object, `, at which subjects perceive the target’s scene-relative velocity to

be zero: ®𝑤 ′
𝑡 = 0 (a.k.a., bias and inaccuracy). During each trial, the subject is presented

with targets of different velocities, ®𝑤𝑡 , which appear on-screen to be moving along

®𝑣𝑡 = ®𝑤𝑡 + ®𝑣B, (4.1)

as illustrated in Figure 4.1a. By aggregating subject responses for different target veloc-

ities, ®𝑤𝑡 , each corresponding to a different target heading direction, 𝜑𝑡 (see Figure 4.1b),

we fit a psychometric curve, ? (see Equation (2.2)). This allows us to determine the

response bias in heading target heading judgments, 𝜑𝑡 = `, at which observers per-

ceive that the target is neither moving left nor right. The experimental data used to fit

the response bias, `, and slope, 𝜎 consisted of 11 target headings, 𝜑𝑡 , stimulus levels

uniformly sampled between [−𝜑B,+3𝜑B] (see Figure 4.1c).

Conditions. Beyond determining the psychometric parameters of a single con-

dition, we aim to investigate how these parameters vary with scene motion, and

depth. To this aim, we anchor our measurements to a reference condition, where
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Which Direction?

(b) application study protocol: choose direction (c) top-down view

Figure 4.3: Study protocols. (a) In the psychophysical study, a fixation cross is displayed for .5 s

at the beginning of each trial. Subsequently, a video plays depicting a scene moving towards

the observer at a non-zero heading angle (arrow in (c)). After 1 s, a moving yellow probe (green

arrow) is added to the screen. Once the 2 s video finishes, the subject is asked whether the

probe was moving left or right. The probe does not have a forward velocity (top of (c)). (b) In

the application study, the protocol is near-identical, with three differences. The target object is

added at the start of the trial, it has forward velocity (bottom of (c)), and the subject is asked to

choose one of seven options to indicate the direction of the object’s motion.
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{𝑣B = 1 m/s, 𝜑B = 15◦, ℎB = 1.75 m}, and explore test conditions where only one at-

tribute of the reference changes. These test conditions vary in scene dynamics in speed,

𝑣B ∈ {0.5 m/s, 3 m/s} and heading, 𝜑B ∈ {5◦, 25◦}, as well as scene content in height,

ℎB ∈ {.55 m, .74 m, 5.22 m}, resulting in a total of 8 study conditions. Note that we vary

the observer height ℎB to examine the corresponding scene’s depth disparity to the

target. To provide a more intuitive representation of depth disparity, we henceforth

express these conditions via a dimensionless target-scene depth disparity coefficient:

3 = ℎ𝑡/ℎB ∈ {.05, .3, .9} for each scene height condition, and 3 = .7 for the reference.

Lastly, in the training session, to avoid introducing external bias to subjects’ judg-

ment, the trials were deliberately designed as (1) significantly different from trials in

the study, and (2) sufficiently easy for classification, yet difficult enough to mitigate

potential misinterpretation of the task. So, we selected four trials with 𝜑B = 40◦, and

𝜑𝑡 ∈ {±30◦,±40◦}. The trial with 𝜑B = 40◦ and 𝜑𝑡 = 30◦ satisfied the requirement (2)

above and thus was reused as a screening trial to identify subjects who misinterpreted

the task even after the training. The screening trial was repeated 24 times throughout

the study, Each trial was mirrored to ensure left/right balance, resulting in a total of

(11 × 8 + 24) × 2 = 224 main trials (median completion in 21 min).

Filtering. To ensure high-quality data from crowd subjects, we employed a two-

layer statistical screening. First, we screened inattentive subjects who only made

random guesses. An informal pre-pilot study suggested that subjects almost always

gave correct responses when 𝜑𝑡 = 3𝜑B as these were easy-to-answer trials. We leveraged

this observation and required an accuracy of ≥ 90%, or a guess rate of 𝜆 < 10%, to

pass this screen (random guess accuracy is 50%). Second, we screened for subjects

who misinterpreted the task and indicated object motion directions relative to the
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observer. To this end, we required an accuracy of ≥ 50% on screening trials (where

observer-relative accuracy is 0%). Refer to Section 4.A for study results reported without

screening trial-based filtering.

4.1.2 Results and Discussion.

Results. From the initial 78 subjects, we removed 4 (5%) from the attentiveness

screen and 36 (46%) from task understanding screen, within a normal range for such

crowdsourcing studies [Brühlmann et al., 2020]. In total, 6, 688 trial results were used for

further analysis. Prior to combining the left and right heading conditions, we conducted

a one-way Analysis of Variance (ANOVA) which showed that the direction of heading

did not have a significant effect on the subject-aggregated responses (𝐹1,174 = .1, ? = .75).

As described in Metrics, we statistically summarized study responses by fitting

psychometric curves, extracting the low-dimensional parameters of the threshold, `,

and slope, 𝜎 , for each condition separately (with a fixed 𝜆 = 1.6% across all conditions

found via the attentiveness screen guess rate). Curve parameters for each series of

conditions that varied along a single attribute were interpolated via polynomial regres-

sion (quadratic for `, and linear for 𝜎). The results are visualized in Figure 4.4. See

Section 4.B for individual curve parameters and polynomial term coefficients.

Discussion. The statistical analysis demonstrates that we can safely aggregate head-

ing directions in a left-right agnostic manner. The central bias persists across all studied

conditions, as evidenced by the measured thresholds below the łunbiased judgmentž

line in Figure 4.4. This suggests that objects moving to the right at a heading angle

between the 50% threshold and the unbiased judgment line will be perceived as moving

to the left by most observers.
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We observe other notable trends from the visualization. From Figure 4.4a, we

observe a steady increase in both bias and consistency. That is, at higher scene speeds,

judgments across subjects become more consistent, yet inaccurate. From Figure 4.4b,

the threshold for the scene heading model intersects at zero degrees, indicating that for

forward headings, our perception of lateral motion directions becomes accurate due to

the lack of asymmetric optical flow cues. Comparing the unbiased judgment line with

the threshold fit suggests that the scale of motion estimation bias is roughly proportional

to the scene heading, 𝜑B . From Figure 4.4c, our perceptual errors increase with the

depth disparity between the target and the surrounding scene (i.e., ↑ 3). Intuitively, this

reveals that if the scene content is too far (e.g.,, the sky), it no longer appears to move

nor offer cues to target motion. Conversely, if the scene overlaps with the target (i.e.,

3 → 0), we still observe a significant bias.

Our 2D-monitor-based study results notably reveal stronger bias compared to prior

literature with similar stimuli but in VR (12◦ when 𝜑B = 15◦ [Xie et al., 2020b; Xing and

Saunders, 2022]). This aligns with previous findings of stereo cues on motion perception

[Burlingham and Heeger, 2020; Van den Berg and Brenner, 1994a,b]. The stronger bias

observed in 2D displays underscores the crucial need to thoroughly measure, predict,

and compensate for human errors in the prevailing computer graphics medium today.

This also motivates the future development of 3D displays. In the following section, we

utilize our study data to establish a perceptual model predicting human errors in target

and scene heading judgment.

4.1.3 Modeling Target Motion Errors

Model Extrapolation. In Section 4.1.1, we conducted three separate polynomial

fits to distinct subsets of the study data, each sharing only the reference condition of
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Figure 4.4: Psychophysical Study Results. Psychometric curves along (a) scene speed, (b) scene

heading, and (c) target-scene depth ratio are fitted from the study data, and interpolated via

polynomial regression. Yellow colors indicate majority left responses in the left/right study

protocol described in Section 4.1.1. Each curve’s threshold is denoted as a scatter with error-

bars indicating the jnd offset, or stimulus levels at 25/75% response probability. Contour lines

represent jnd step-sizes. łPerfectž unbiased observer’s thresholds, as depicted in Figure 4.1b,

are visualized as comparison via dotted black lines. Refer to supplementary video for user study

conditions which correspond to various points across the heatmaps.

{𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7}. By factoring out the parameters of the reference from

the fitted models, we express each model as 𝜇 (𝑣𝑠) = 𝜇𝑟𝑘𝑣 (𝑣𝑠), 𝜇 (𝜑𝑠) = 𝜇𝑟𝑘𝜑 (𝜑𝑠), and,

𝜇 (𝑑) = 𝜇𝑟𝑘𝑑 (𝑑), where 𝜇𝑟 represents the psychometric threshold of the reference; 𝑘𝑣/𝜑/𝑑

denote the three individually fitted polynomial models with 𝜇𝑟 factored out. That is,

these models show how the threshold changes due to a change in condition from the

reference, meaning, 𝑘𝑣 (𝑣𝑠 = 1 m/s) = 𝑘𝜑 (𝜑𝑠 = 15◦) = 𝑘𝑑 (𝑑 = 0.7) = 1. To integrate these

individual models into a unified holistic one, we employ a first-order approximation

and assume the absence of cross-condition effects. Then, we express the overarching

model as:

𝜇 (𝑣𝑠, 𝜑𝑠, 𝑑) = 𝜇𝑟𝑘𝑣 (𝑣𝑠)𝑘𝜑 (𝜑𝑠)𝑘𝑑 (𝑑). (4.2)
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Figure 4.5: Full model parameters. The combined model parameters are visualized as 2D surface

slices at two different scene speeds, 𝑣HIGH𝑠 = 3 m/s and 𝑣LOW𝑠 = 0.5 m/s. The threshold, 𝜇

indicates the critical heading of observed targets, 𝜑𝑡 , at which observers, on average indicate

that the target is moving neither left nor right toward the observer. The slope, 𝜎 indicates

the confusability between different target headings (i.e., higher 𝜎 indicates that the ability to

discriminate two target headings are poorer). As reported in Section 4.1.1, increasing the scene

movement speed increases the perceptual bias (meaning lower threshold) for observers, while

decreasing the confusability between targets moving along different heading directions.

This formulation ensures that the trends of each model are extended across a broader

spectrum of conditions without compromising the predictive accuracy of the existing

conditions. We acknowledge that closer analysis of cross-condition effects could reveal

more intricate trends in motion perception errors and is an interesting direction of

study, but in the scope of this work, we aimed to determine only the first-order effect,

and explore the interesting applications that such a model can enable.

In Figure 4.5, we present a visualization of the predicted psychometric parameters of

the combined model. The extended model features combinations of prominent features

discussed in Section 4.1.1 such as the decrease in estimation errors as the target-scene

depth disparity, 𝑑 , decreases, and the proportional errors with heading direction, 𝜑𝑠 .

Predicting Scene-Relative Target Heading. Thus far, our psychophysical study,

and analysis have concentrated on measuring motion judgment errors under the simple

condition where the scene-relative target’s motion, ®𝑤𝑡 , was constrained along a single
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axis leftward or rightward (illustrated by dashed yellow vectors in Figure 4.1). But

how do these results generalize to conditions where target objects can move in various

directions? In order for our model to be applicable for any practical scenarios, it is

imperative to establish a framework for extending our perceptual model to accommodate

target motions beyond simple lateral movements.

As shown in Figure 4.1b and supported by the relation in Equation (4.1), the poor

estimation of the two motionsÐthe scene motion (®𝑣𝑠 ) and scene-relative target motion

( ®𝑤𝑡 )Ðare dependent on each other. This relationship is expressed as ®𝑤𝑡 = ®𝑣𝑡 − ®𝑣𝑠 , where

®𝑣𝑡 represents the target’s observer-relative velocity. Hence, an observer’s misjudgment

of scene-relative target movement corresponds to an opposite misjudgment of scene

movement:

®𝑤 ′
𝑡 = ®𝑣𝑡 − ®𝑣′𝑠 . (4.3)

In our study, the psychophysical thresholds indicate the critical value ®𝑣𝑡 , with a

corresponding heading of 𝜑𝑡 = 𝜇 (𝑣𝑠, 𝜑𝑠, 𝑑), at which ®𝑤 ′𝑡 = 0. By incorporating these

results into Equation (4.3), we conclude that our model yields the perceived heading of

scene motion, which our study has shown to deviate from the actual heading:

𝜑′𝑠 = 𝜇 (𝑣𝑠, 𝜑𝑠, 𝑑) . (4.4)

Ultimately, by combining Equations (4.3) and (4.4), we derive an expression for

estimating the perceived scene-relative target motion:

®𝑤 ′𝑡 = ®𝑣𝑡 − ®𝑣′𝑠 = ( ®𝑤𝑡 + ®𝑣𝑠) − ®𝑣′𝑠 = ®𝑤𝑡 + ®𝑣𝑠 − (𝑅𝜇𝑧)𝑣𝑠 (4.5)
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where 𝑅𝜇𝑧 represents the forward unit vector (see Figure 4.1a) laterally rotated by

𝜇 (𝑣𝑠, 𝜑𝑠, 𝑑). We visualize this vector sum in Figure 4.8a.

4.2 Model Validation

4.2.1 Measuring Model Robustness

To ensure model robustness, we conduct a numerical validation by fitting the model

to half of the experimental data, and measure its goodness-of-fit to the other half of

the data unseen by the fitted model. Specifically, each of the 𝑛 = 38 subjects’ data is

randomly partitioned into either a model fitting or evaluation group. We then assess the

model’s prediction accuracy compared to the observed data using the 𝑅2 coefficient for

each study condition. Due to the arbitrary nature of the subject partitioning operation,

we repeated this procedure 𝑁 = 20 times, and observed that the lowest score recorded

was .61, while the mean score across all conditions and repeats to be .95, compared to

the full model’s self-fitting score of .98, indicating acceptable fits [Ozili, 2023].

4.2.2 Generalizability Over Population

We validate whether the psychometric curves fitted from the sample population in

Section 4.1.1 can generalize to unseen subjects. To this aim, we conducted a smaller-scale

user study featuring only the reference condition from our main study in Section 4.1.1

on a new subject group (𝑛 = 23, ages 22 − 52, 11 males). This study replicated the study

protocol, stimuli, and crowdsourcing-based recruitment methods of Section 4.1.1.

Conditions. Our goal in this study was to investigate the variability of motion

judgment errors across different subjects and to use the results to validate our main
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study in Section 4.1.1. To keep the study duration and cost feasible, we only studied

the reference condition from the main study (i.e., {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7})

and increased the number of repetitions for each trial (10 repeats) to sufficiently fit

corresponding psychometric curves for individual subjects. Step sizes between target

heading levels, 𝜑𝑡 , were decreased to 4.2◦ to ensure higher precision measurements.

Overall, the study consisted of 80 measurement trials, 20 filler trials featuring random

conditions to prevent categorical judgments [Xing and Saunders, 2022], and 48 screening

trials (see Section 4.1.1 for details) for a total of 148 trials completed in 15 min by the

median subject.

Results and discussion. Wefit individual psychometric curves to each of the subjects’

aggregated study responses, and observed a mean threshold, 𝜇avg = 4.6◦ ± 1.1◦ Standard

Error Mean (SEM) and mean slope, 𝜎avg = 6.2◦ ± 1.4◦ SEM for the condition identical to

the reference of our main study. A single sample 𝑡-test indicates that the mean threshold

and slope from the main study 𝜇 = 6.2◦ and 𝜎 = 5.7◦ is not significantly different from

the distribution of thresholds and slopes in the evaluation study, 𝑡 (22) = −1.4, 𝑝 = .18

and 𝑡 (22) = .35, 𝑝 = .73, respectively.

The statistical analysis demonstrates that the psychometric threshold found for

the reference condition in our main study lies within acceptable limits of thresholds

of out-of-population individuals. While the approach for establishing representative

psychometric curve parameters utilized in this evaluation study are more robust due to

the larger volume of samples we collect per-subject, we note that conducting a main

study of similar scale in terms of different conditions studied becomes unfeasible in

practice due to prohibitively high study durations and costs.
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(b) SPORTS: Camera Pose (c) SPORTS: Camera Pose +
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Figure 4.6: Application case study protocols and scenes. (a)/(d) shows the original animations of

the target and camera simultaneously moving in a 3D scene. Both the model prediction and

our study results indicate that the animation design induces significant perceptual errors in

users’ perceptual error of target motion. To reduce such errors, our model enables predictive

suggestions for design optimizations, such as adjusting camera poses (b), as well as adding

static (c)/(e) and dynamic (f) background geometries.

4.3 Application Case Study: Animation Design Guid-

ance

Scene dynamics, including camera and object motion control [Hsu et al., 2013], as well

as scene content, such as depth [Kellnhofer et al., 2013], are crucial factors in animation

design [Jiang et al., 2021; Lino and Christie, 2015], video editing [Kang and Cho, 2019],

and game development [Caroux et al., 2013]. Traditionally, the design of these factors

has been implicitly driven by aesthetics or storytelling.

We investigate observers’ perceptual errors in the target dynamics with two 3D

animations. Subsequently, we propose model-guided design alterations, including

optimizing camera pose, adjusting the placement of scene objects, and introducing

subtle motions to them, to mitigate the predicted perceptual errors. We evaluate the

effectiveness of these scene design improvements by conducting multiple-choice user

studies.
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4.3.1 Experimental Design

Participants and procedure. We conducted two user studies via crowdsourcing and

recruited 𝑛 = 22 subjects (ages 20 − 64, 10 male) for each. Unlike the two-alternative

forced choice (left vs. right judgment) tasks in Section 4.1.1, subjects in this study directly

indicated perceived scene-relative directions of target motion. As shown in Figures 4.3b

and 4.8, they chose from one of seven options, each representing a scene-relative target

heading of 𝜓𝑡 ∈ {±30◦,±20◦,±10◦, 0◦}. After viewing a 2 s video featuring a moving

target within a moving scene, subjects referred a top-down view presented at the end

of each trial and pressed a button to indicate their choice.

Stimuli. Two realistic scenes, along with corresponding target objects, were used

to simulate common gaming and simulation animations: (1) sports gaming with golf

(SPORTS), and (2) flight simulation (FLIGHT), as shown in Figure 4.6. In both scenes,

as depicted in Figure 4.3c, the scene moves towards the observer at a heading of 𝜑𝑠 = 25◦

with a speed of 𝑣𝑠 = 1 m/s and .5 m/s for SPORTS and FLIGHT, respectively (the scene

and target sizes were re-scaled to align with the scaling of our model).

Each scene features a target object: a golf ball, and a hot-air balloon. At the start of

each trial, the target object appears at a random location within 10◦ from the fixation

point, and a distance of 12 − 14 m and 6 − 7 m from the observer for each scene. The

target moves towards the observer along the 3rd trajectory in Figure 4.8 at a heading

of 𝜑𝑡 = 10◦ and a speed of 𝑣𝑡 = 2.8 × 𝑣𝑠 . The observer-relative motion of the target is

equivalent to a scene-relative motion along the 6th trajectory in Figure 4.8, or𝜓𝑡 = −20◦.

Each subject completed 10 repetitions of these trials as well as 5 more filler trials

with random target object headings to prevent categorical responses. We provided

mirrored motions for each trial to ensure left-right balance for a total of 30 trials per
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Figure 4.7: Results of the application case study. The x-axis shows the scene-relative target

heading angles corresponding to individual options (1-7) provided in the study. The red and

yellow/green points represent the distribution of per-subject aggregated mean response data

in control and our model-suggested re-designed animations, respectively. The black points

represent the corresponding response distribution simulated from our model prediction. The

points (𝜓 ′
𝑡 ) are vertically jittered for plot visibility.

study condition. Similar to our psychophysical study in Section 4.1.1, subjects also

completed a pre-study training session with a straight-ahead heading 𝜑𝑠 = 0◦, and

targets moving along 1st, or 7th trajectory (i.e.,𝜓𝑡 ∈ ±30◦). The median completion time

was 15 min.

Conditions. For each scene, we prepared two content re-design łtreatmentž condi-

tions without changing the original camera motion trajectory, when compared to the

control conditions shown in Figures 4.6a and 4.6d. As evidenced in Figure 4.4c, decreas-

ing target-scene depth disparity, 𝑑 , reduces perceptual errors. Thus, to address this

issue, in SPORTS, the first re-design elevates the camera height, and lowers the viewing

angle for a more łbirds-eyež view (Figure 4.6b). As a more aggressive re-design, we also

added scene elements behind the target golf ball to further decrease depth disparity
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(Figure 4.6c). Across these three scenes, the average scene-target depth disparities were

𝑑 = .1/.6/.7, respectively. Using our model and target heading prediction framework of

Section 4.1.3, we determined𝜓 ′
𝑡 = 16◦/10◦/−5◦ for the three conditions respectively.

Similarly, for FLIGHT, we first added static cloud objects into the scene to decrease

the depth disparity from 𝑑 = .8 to 𝑑 = .4 as shown in Figure 4.6e. For the second

treatment, we took a different approach by attempting to simulate a different scene

heading by adding a horizontal drift velocity, 𝑣 = .25 m/s, to the clouds relative to

the rest of the scene to reinforce the lateral direction of optical flow and induce a

higher perceived scene heading angle of 𝜑𝑠 = 37◦ (see Figure 4.8b). In effect, our model

predicts that the perceived scene-relative target heading for the target hot-air balloon

was𝜓 ′
𝑡 = 22◦/−1◦/−12◦, respectively.

4.3.2 Results and Discussion

Results. For both studies, we summarize the mean response of each subject and

each condition by aggregating across the 20 recorded trials. Figure 4.7 compares the

acquired distributions of target headings𝜓 ′
𝑡 with the model-prediction. Across subjects,

in SPORTS, the measured mean and SEM target headings were 𝜓 ′
𝑡 = 9.1◦ ± .91◦,

4.8◦ ± .60◦ and −5.5◦ ± 1.2◦ for the control, camera pose and additional scene content

conditions respectively, while in FLIGHT, the measurements were 𝜓 ′
𝑡 = 6.5◦ ± .71◦,

−1.8◦ ± 1.5◦ and −7.5◦ ± 1.8◦ for the control, static scene and dynamic scene conditions,

respectively. Across all conditions, the ground-truth scene-relative target heading was

𝜓𝑡 = −20◦. A repeated measured ANOVA shows that the conditions within each study

had a significant effect on the mean responses for both SPORTS (𝐹2,42 = 94.0, 𝑝 < .01)

and FLIGHT (𝐹2,42 = 65.6, 𝑝 < .01) scenes.
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Figure 4.8: Predicting and compensating target motion estimation in animation design. (a) Similar

to the illustration in Figure 4.1a, an observer may erroneously perceive the target motion ®𝑤𝑡 as

®𝑤 ′
𝑡 by judging from ®𝑣𝑡 on screen. As shown in Figure 4.6, we leverage our model to alter the

scene designs in various ways to reduce the error. (b) We take the łDynamic Scenež condition in

FLIGHT (Figure 4.6f) as example. The model-guided cloud motion alters observers’ perception

so that ®𝑤 ′
𝑡 becomes closer to ®𝑤𝑡 (as evidenced in Figure 4.7).

Discussion. As shown by the ANOVA results, the model-guided content re-design

significantly improved the accuracy of target heading judgments for the subjects. Our

model was able to predict the overall trend of heading judgment errors, although the

exact numerical predictions were slightly inaccurate. We attribute this performance

regression to the introduction of higher-order cognitive cues in the more realistic stimuli

and discuss its implications further in Section 4.4. Nevertheless, our model is still capable

of providing a first-order approximation of the relationship between observer-relative

scene and target velocities (®𝑣𝑠 and ®𝑣𝑡 ) and the scene-relative target velocity ( ®𝑤𝑡 ). In

real-world applications, we can leverage these predictions to provide guidance and

feedback on the overall estimation difficulty, and anticipated motion judgment errors

users are likely to make when observing dynamic imagery.
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4.4 Limitations

Additional cues. Beyond image space, stereo [Burlingham and Heeger, 2020] and

vestibular [DeAngelis and Angelaki, 2012] cues from emerging 3D displays may also

alter motion perception, together with semantic and cognitive influences, including

human body pose [Blake and Shiffrar, 2007], visual path information [Li et al., 2009],

and object shadows [Kersten et al., 1997]. Meanwhile, many of these phenomena

rely on higher-order cognitive cues beyond low-level visual operators. For example,

understanding the relationship between the motion of objects and the shadows they cast

requires spatial reasoning and is a non-intrinsic, learned skill in humans [Van de Walle

et al., 1998]. In this work, we chose to first establish a baseline for human perception

at an abstraction level where all high-level cues were absent, and the only source of

information was the optical flow derived from motion within a 3D environment. After

confirming significant perceptual errors under these abstract baseline conditions, we

then constructed amore realistic synthetic scene in Section 4.3 to determine whether any

of the baseline estimation errors persist and to assess if our model can still mitigate these

errors within the scope of our chosen parameterization, despite the introduction of high-

level factors. We believe that these experiments successfully demonstrate the effective

application of optimizing animation design pipelines as a first-order measurement and

mitigation of human perceptual errors.

Cross-conditions. In Section 4.1, we characterize the scene dynamics with self move-

ment (direction and speed) and content depths (with regard to the object). Exploring

additional combinations of scene and object dynamics, such as rotations and vertical

movements, leads to a prohibitively large number of trials. This poses challenges due

to participants’ limited attentive capacity for maintaining data accuracy, as well as
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the associated financial costs or running long studies. Therefore, this research focuses

on separately measuring the effects from individual dimensions. To study the cross-

conditions while maintaining feasibility, we plan to first analyze a primary effect via

a pilot study similar to In [2017], and extend the work towards a dimension-reduced

study.

Motion degrees of freedom. We study perceptual errors for horizontal motion pat-

terns along transverse (horizontal) planesÐthe more common human motion [Hummel

et al., 2016]. However, both object and scene motions together form a complex 12 de-

grees of freedom (DoF) problem (6 DoF each for the self and the object) across all planes,

including the coronal and sagittal. In such case, a rotating observer or object will elicit

a moving FOE [Danz et al., 2020]. Therefore, introducing a temporal movement factor

to the FOE, a.k.a., its locus, could be a key to modeling arbitrary motions [Rangarajan

and Shah, 1992]. Additionally, camera motion analysis using a large-scale egocentric

motion dataset (e.g., Ego4D [Grauman et al., 2022]) could establish a coordinate system

tailored for the most prevalent human motion patterns.

Perceptual attention and confidence. In highly complex scenarios, various objects

maymove in different directions. The confounding optical flowmay further compromise

observers’ perception in understanding the motion [Warren et al., 1988; Warren Jr and

Hannon, 1988]. Moreover, because of humans’ selective attention, the movement of

multiple objects can also interfere with the visual sensitivity towards a specific target

[Min and Corso, 2019]. Our current model assumes full attention to a single target. In

the future, we plan to explore the influence from optical flow entropy toward a more

content-aware probabilistic model.
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Figure 4.9: Unfiltered Study Data Analysis. Results of processing the data without applying

the task understanding filter are visualized for comparison with Figure 4.4. See the caption for

Figure 4.4 for details on the visualization designs.

4.A Unfiltered Psychophysical Data Analysis

In this work, we rejected a significant number of subjects via our task understanding

filter, as described in Section 4.1.1, to ensure high quality data acquired from crowd-

sourced study participants. Here, we present the psychometric curve fitting results

for the unfiltered data to serve as a comparison to the results included in the main

manuscript. In Figure 4.9, we replicated Figure 4.4 to serve as a direct comparison

between the filtered and unfiltered data. The psychometric threshold for the reference

condition was 𝜇𝑟 = 4.2◦ when compared to 𝜇𝑟 = 6.2◦ as reported for the unfiltered data.

The Discussion about the trends and patterns of the psychophysical study results in

Section 4.1.1 are largely unchanged for the unfiltered data, albeit with a much stronger

bias effect.



96
Table 4.1: Psychometric parameters for different scene speeds, headings, and depth ratios.

Attribute Value Threshold, 𝜇 (◦) Slope, 𝜎 (◦)

𝑣𝑠 (m/s)
0.5 6.5 8.8
1 6.2 5.7
3 4.7 4.4

𝜑𝑠 (degrees)
5 2.1 5.7
15 6.2 5.7
25 9.1 4.4

𝑑

0.05 10.8 7.6
0.3 9.2 6.2
0.7 6.2 5.7
0.9 1.6 5.2

4.B Psychometric and Polynomial Fitting

Below, we list the parameters for all the psychometric curves fitted using the data

collected from our psychophysical study of Section 4.1.1:

These psychometric parameters were then regressed to fit polynomial curves with

fitted parameters 𝜇𝑟 = 6.2◦ and 𝜎𝑟 = 5.7◦.:

𝜇 (𝑣𝑠, 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜇𝑟 × (.931 + .077𝑣𝑠 + .006𝑣2𝑠 ),

𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠, 𝑑 = .30) = 𝜇𝑟 × (.045 + .054𝜑𝑠 + .001𝜑2
𝑠 ),

𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜇𝑟 × (.531 − .171𝑑 + 1.390𝑑2),

𝜎 (𝑣𝑠, 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜎𝑟 × (1.486 − .302𝑣𝑠),

𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠, 𝑑 = .30) = 𝜎𝑟 × (1.093 − .011𝜑𝑠), and,

𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜎𝑟 × (1.308 − .459𝑑).

(4.6)
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Chapter 5

Decision-Making Latency Effects

from Visual Signal Characteristics

Measuring, modeling, and predicting how humans perceive and act on displayed visual

content are important tasks in computer graphics, with applications in cinematic, real-

time rendering, virtual/augmented reality (VR/AR), display optimization, esports, video

compression/streaming, and visual design [Dunn et al., 2020; Mantiuk et al., 2004;

Patney et al., 2016; Serrano et al., 2017; Sitzmann et al., 2018]. Perceptual image quality

metrics predict the likelihood of visibility of image artifacts that result from creative

and technical design, or are a side-effect of rendering, processing, or transmission.

While many such metrics already exist, research is primarily focused on modeling the

spatial/temporal acuity of the human visual system (HVS), not on how viewers łreactž

after perceiving the stimuli. Although visibility may be closely related to behavior,

learning the transfer function between the appearance of visual stimuli and the different

reactions observers might exhibit. Since responses are critical in many interactive

applications such as esports and user interfaces, metrics that predict user reactive
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performance are arguably in emerging and crucial demand.

Researchers have so far exhaustively studied the acuity of the human visual system

and established a significant body of perceptual image-quality metrics [Hore and Ziou,

2010], as well as perceptually-optimized computer graphics techniques [Krajancich et al.,

2021; Patney et al., 2016]. As discussed in greater detail in Section 2.1, such methods

have unlocked significant performance and memory optimizations, as well as quality

improvements. While a great deal of work has focused on how human perception can

affect how we design graphics systems, behavior-aware computing is a relatively new

field (see Section 2.1.3), and thus doesn’t feature comprehensive literature focusing on

this topic.

In this chapter, we study analytical models of user reactions based on the visual

features of displayed content. Specifically, we explore how users make decisions by

observing their eye movement behaviors. We propose an analytical model for a user’s

reaction time as evidenced by their eye movements. Specifically, across two main

experimental designs, we study the temporal characteristics of saccadic eye movements

(covered in further detail in Section 2.3.4) and use these measurements to infer human

ability to make decisions based on the visual properties of the stimuli that they observe.

Saccadic reaction latencies, after the eye observes a stimulus, are closely tied to

performance in a broad range of real-time applications. For instance, subtly (as low as

4ms [Kim et al., 2019]) altered saccade latency can significantly determine performance

in competitive esports [Koposov et al., 2020]. Each saccade involves perceiving a

stimulus, identifying the target [Lisi et al., 2019], sending oculomotor neural signals,

and controlling the extraocular muscles to reorient the eyeballs. Due to these complex

mechanisms, fully characterizing changes in saccade/fixation as a function of changes

in visual stimuli remains an open problem in vision science and computer graphics.
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Note that, unlike with visual quality metrics, both high and low visibility of a target

could hypothetically induce a longer processing time for fine details or blurred con-

tent. That may lead to potential non-correlation between acuity and saccadic latency

[Kalesnykas and Hallett, 1994]. Indeed, while visibility has been shown to be closely re-

lated to behavior, there is evidence that perceptually identical stimuli frequently result in

significantly different reactions for observers [Mulckhuyse and Theeuwes, 2010; Spering

and Carrasco, 2015]. Therefore, this work presents behavioral models which correlates

the visual features of visual stimuli to the timing of humans’ cognitive decisions to per-

form saccades. We adapt to different viewing tasks that involve reacting to both static

and dynamically moving visual stimuli. Furthermore, we also demonstrate how these be-

havioral models can be leveraged to make predictions, and suggest optimizations toward

customizing user action timings, measuring competitive fairness in video games, and

predicting user performance across different display environments. Source code and data

for this chapter’s contents are available at www.github.com/NYU-ICL/gaze-timing

and www.github.com/NYU-ICL/pursuit-timing.

5.1 Measuring Discrimination Latency

In our first experiment, we will study the decision-making latency in visual discrimina-

tion tasks. We begin by conducting a psychophysical experiment with parameterized

stimuli to observe and measure the correlation between image characteristics and

the time it takes to process and discriminate them in order to trigger a saccade, and

whether/how the correlation differs from that of visual acuity. In the following section

we will leverage our collected data to construct a predictive model of visual discrimina-

tion latency.

www.github.com/NYU-ICL/gaze-timing
www.github.com/NYU-ICL/pursuit-timing
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Figure 5.1: Preliminary user study procedures and results. (a) shows our setup and the study

procedure: two target Gaussian patches are shown left and right from the initial fixation. After

a brief delay of 300 to 500 ms, a reference Gabor stimulus appears in the inferior periphery.

If the reference stimulus is oriented at 45◦ clockwise from the vertical axis, the correct target

saccade location is on the right side, and vice versa for a reference stimulus with the opposite

orientation (i.e. counter-clockwise orientation). The latency of the saccade response indicating

the decision is recorded. Across trials, the contrast, frequency, as well as vertical eccentricity of

the reference Gabor stimulus are varied as experimental parameters. Target Gaussian patches

are unchanged across all trials. (b) visualizes all the stimuli used for this study. Chosen contrast

values are 𝑐 = {0.05, 0.22, 0.53, 1.0} as measured by Weber contrast; frequency values are

𝑓 = {0.5, 1.0, 2.0, 4.0} cpd. All stimuli were shown at eccentricity values of 𝑒 = {0◦, 10◦, 20◦}. (c)

histograms of saccade latencies for one sample subject when the reference stimulus was located

at 0◦ eccentricity. The distributions exhibit a skewed asymmetrical shape, similar to other

distributions of reaction time in related work (see Figure 2.2). With {𝑐 = 0.53, 𝑓 = 2cpd, 𝑒 = 10◦}

as the reference stimulus, all stimuli images (from (b)) show high and similar FoVVDP scores

(9.52 ± 0.03), despite significant variances in their resulting saccade latencies.
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Table 5.1: Specifications of the HTC Vive Pro Eye display used in our studies.

Feature Value

Display Resolution 1440 × 1600 pixels per eye
Refresh Rate 90Hz

Peak Luminance 143 cd/m2

Field of View 110◦ diagonal
Eye Tracker Frequency 120Hz

5.1.1 Experimental Design

Setup. The study was performed with an eye-tracked HTC Vive Pro Eye head-

mounted display as shown in Figure 5.1a and implemented in the Unity Game Engine.

The hardware details are specified in Table 5.1. During the study, participants remained

seated and perceived stimuli through the stereo display. Before each experiment, a

five-point eye-tracking calibration was applied on each individual.

Participants. The psychophysical study was performed with 𝑛 = 5 participants (ages

22 − 28, 3 female) with normal or corrected-to-normal vision. The participants were

instructed to perform a series of two-alternative forced choice (2AFC) tasks for each

trial. The experiment was conducted during a single session split into 10 blocks, with

each block containing 225 trials, i.e., 11250 trials in total with all the participants. The

procedure took around 2.5 hours for each participant, including breaks between blocks,

a short training session preceding the experiment, and a debrief afterwards.

Stimuli and Tasks. Figures 5.1a and 5.1b illustrate the experiment procedure and

stimuli. The task is to:

1. fixate at the center of the display,
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2. when visible, identify the orientation (i.e., symmetry axis) of the Gabor pattern

presented at some eccentricity in the visual field, and

3. make a saccade either to a left or a right target based on the orientation of the

Gabor pattern.

We include Gabor patches for all combinations of contrasts (𝑐 = {.05, .22, .53, 1.0}),

frequencies (𝑓 = {.5, 1.0, 2.0, 4.0} pixels-per-degree), and eccentricities (𝑒 = {0◦, 10◦, 20◦}).

Three conditions (with (𝑐, 𝑓 , 𝑒) values of (.05, 4.0, 10◦), (.05, 4.0, 20◦), (.22, 4.0, 20◦)) were

excluded due to the patches not being detectable by all participants. The eccentricity

range was chosen to cover common scenarios since the human gaze does not typically

go outside 10◦ from the center [Hatada et al., 1980], and most natural saccade sizes are

less than 15◦ [Bahill, 1975]. Unless otherwise specified, we use Weber contrast in all

our experiments and as input to our model.

At the beginning of each trial, the participants fixated at a cross shown in the

center of the screen. Once they successfully fixated on the cross, it disappeared and a

pair of Gaussian patches appeared at 10◦ eccentricities to the left and right of fixation.

These patches served as the target locations to which the participants would saccade

to indicate their decision about the stimulus. After a small delayÐchosen randomly

between 300 and 500 ms to avoid learning effectsÐthe primary stimulus (Gabor patch)

appeared either at the center of the screen (eccentricity=0◦), or at some eccentricity in

the inferior peripheral vision (eccentricity=10◦ or 20◦). We instructed the participants

to identify whether the Gabor stimulus was oriented at a rotation of 45◦ clockwise from

vertical, as shown in Figure 5.1a, or 45◦ counter-clockwise from vertical. We further

instructed them to saccade to the target patch corresponding to their determination,

right for clockwise and left for counter-clockwise. During each trial we recorded the
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subjects gaze at a rate of 120 FPS using the display’s built-in eye tracker.

We varied the eccentricity, contrast, and frequency of Gabor patterns across trials

such that each combination of variables was shown 5 times in each block for 10 blocks,

yielding a total of 50 trials per condition. To ensure the participants were completing

the task correctly, we discarded all trials where they do not complete the task correctly,

and repeat all mistaken trials at the end of the block until all trials are completed. The

order of these conditions was randomly shuffled within each block to eliminate any

bias. Meanwhile, all features of the Gaussian target patches (only being used to cue the

saccade direction) remained unchanged throughout the trials. For the practice session

at the beginning of the experiment, each participant performed one block of the study

with identical settings as in the actual study. Please refer to our supplementary video

for an animated illustration.

Saccade Analysis. Our method of detecting reaction times for saccadic events is

measured by the time of onset of the łprimaryž saccade that is used to move the gaze

to the target location. We define the łprimaryž saccade as the saccade that is onset

and offset within 3◦ of the intended gaze origin and target locations respectively. For

saccade detection we use the method presented by Engbert and Mergenthaler [2006].

5.1.2 Results and Discussion

Results. Using this saccade detection method, we identify the saccadic latency as the

duration between appearance of the primary stimulus (Gabor patch) and the first frame

of a participant’s saccade. We notice that the saccade latencies exhibit an asymmetrical

distribution as shown in Figure 5.1c. As the various features of the stimulus are modu-

lated, the overall shape of the distribution remained consistent while the mean saccade
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latency varied by as much as 25% or 100 ms as shown in Figure 5.2. Increasing the con-

trast of the stimuli decreases reaction latency, while increasing the frequency increases

the latency. Further, increasing the eccentricity does not always reveal a monotonic

effect, but instead a U-shaped effect with the lowest mean latency values (265 ms)

plateauing at 10◦. For breakdown visualizations, please refer to Figure 5.2/Figure 5.14

for the effects of individual characteristics and participants.

Discussion. The above results and analysis reveal several remarkable discoveries on

the relationships between visual characteristics and saccadic latency. The asymmetrical

probability distribution agrees with the discoveries of prior work in measuring similar

visual-oculomotor reactive latencies [Carpenter and Williams, 1995; Lisi et al., 2019;

Palmer et al., 2011]. Additionally, at a given eccentricity, as the visibility of the stimuli

improves (either by increasing contrast or by modulating the frequency), the latency

decreases. Meanwhile, the latency rises toward infinity whenever visibility reduces

and approaches the Contrast Sensitivity Function (CSF) threshold. Notably, when

considering stimuli of equal contrast, the measured latency appears to scale at a similar

scale as the contrast sensitivity corresponding to the frequencies of the visual targets.

While not investigated further in this experiment’s analysis, we return to these ideas

in Section 5.3. Lastly, we observe a surprising effect that the saccade latencies for a

stimulus at the fovea are longer than in mid-periphery. We hypothesize that the more

analytic purpose of the fovea causes feature extraction to take longer, similar to the

results reported by Kalesnykas and Hallett [1994].

The collected data and the observations drive our development of a closed-form

probabilistic model inspired by the computational process of decisionmaking, as detailed

in the next section.
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Figure 5.2: Aggregate trends of our preliminary study dataset. The pilot study raw data is

aggregated using either contrast, frequency or eccentricity of the reference Gabor patch, and

averaged across the other two variables. Error bars represent standard error of measurement.

Reaction times decrease as visibility of the stimuli is improved, and vice versa. Surprisingly,

the reaction latency when the stimulus is at the fovea is higher as compared to when it is in

mid-periphery.

5.2 Behavioral Model of Discrimination Latency

5.2.1 Model Specification

In Section 2.2.2, we reviewed how speeded decision-making tasks are often modeled

using the Drift Diffusion Model (DDM). Comparing the temporal distribution of sac-

cade latencies observed in our study (Figure 5.1c) with those predicted by the DDM

(Figure 2.2), we find that their shapes are similarÐboth exhibit bell-shaped distributions

with positive skew.

This similarity aligns with the theoretical basis of our experiment: saccade onsets

result from processing visual information from the target stimulus until sufficient

evidence is accumulated to trigger a decision to shift the eyes. Given this process,

research on saccadic decision-making frequently employs the DDM Myers et al. [2022].

In Equation (2.7), we established that, according to the DDM, the distribution of

latencies is parameterized by the stimulus-dependent evidence accumulation rate, 𝑟 ,
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(d) eccentricity-frequency, 𝑐 =

.22
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(e) frequency contour, 𝑐 = .22
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(f) eccentricity contour, 𝑐 = .22
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(g) contrast-frequency, 𝑒 = 10◦
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Figure 5.3: Visualization of our model. With a given task 𝐷 , our model, defined in Equation (5.1),

is R3 → R. The first row visualizes each two of the three dimensions (𝑐, 𝑓 , 𝑒) as the variable to

the saccade latency (z-axis). The second/third rows are the corresponding contours created by

projecting the model to x-z/y-z axes. Note the U-shaped effects of 𝑒 , and the inverse effects

between 𝑓 and 𝑐 .
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and the response bias-dependent evidence criterion, 𝛼 . In this section, we examine

how these parameters relate to the characteristics of visual stimuliÐsuch as contrast,

spatial frequency, and eccentricityÐas well as response biases associated with the visual

task of interest. Furthermore, we analyze how these parameters in Equation (2.7) are

influenced by the nature of the visual content and the specific demands of the task.

Evidence Criterion. As discussed in Section 2.2.2, the evidence criterion, 𝛼 , reflects

both an individual’s response bias and the specific requirements of the task they are

performing. Palmer et al. [2011] demonstrated that variations in visual signal strength

do not significantly alter 𝛼 within a given experimental procedure. However, it can be

manipulated across different visual tasks, such as feature search, conjunction search,

and spatial configuration search.

Furthermore, Reddi et al. [2003] showed that modifying task instructionsÐeffectively

biasing participants toward different goalsÐcan adjust the evidence criterion without

affecting the evidence accumulation rate, 𝑟 . In our study, since experimental trials are

fully randomized and participants are thoroughly familiarized with the study protocol

and stimuli before data collection, we can reasonably assume that each individual’s

evidence criterion remains constant throughout the experiment.

Evidence accumulation rate. Palmer et al. [2011] also demonstrated that changes

in the difficulty of visual content processing influence the evidence accumulation rate,

𝑟 . Indeed, our study results (see Section 5.1 for details) reveal that visual characteristics

affect the distribution of saccade latencies and exhibit a complex, non-monotonic

relationship with stimulus processing difficulty.

These findings motivate us to model the evidence accumulation rate, 𝑟 , as a function

of the contrast (𝑐), spatial frequency (𝑓 ), and eccentricity (𝑒) of the target stimulusÐkey
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visual features that significantly impact perception. To summarize, we model saccadic

decision-making latency, 𝑇𝑠𝑎𝑐 , using a DDM in which the evidence criterion, 𝛼 , is fixed

based on the visual task specifications, while the evidence accumulation rate, 𝑟 , is

modeled as a function of the target stimulus’s visual properties:

𝑇𝑠𝑎𝑐 ∼ IG(𝛼, 𝑟 (𝑐, 𝑓 , 𝑒)) . (5.1)

In our work, the relationship between 𝑟 and the visual characteristics of the stimulus

(i.e., the tuple 𝑐, 𝑓 , 𝑒) is modeled using a Radial Basis Function:

𝑟 (𝑐, 𝑓 , 𝑒) =
𝑁∑︁
𝑖=0

𝜆𝑖𝜌

(
[
𝑐 𝑓 𝑒

]
− b𝑖

, 𝜎𝑖
)
, (5.2)

where b𝑖 represents the individual radial basis centers, and 𝜌 is a Gaussian basis function.

In our experiments, we set 𝑁 = 20. Using the data collected in Section 5.1, we jointly fit

the RBF parameters 𝜆, b𝑖 , and 𝜎 , along with the evidence criterion 𝛼 , via gradient descent.

Since baseline reaction times vary across individuals due to inherent differences, we first

normalized each participant’s reaction time data, ensuring that reaction times in the

𝑐, 𝑓 , 𝑒 = 1, 1, 0 condition were equalized across subjects before aggregating responses.

5.2.2 Numerical Evaluation

In this section we evaluate the model’s performance by analyzing the model’s robustness

to alternate data fitting and testing partitions of the dataset.

Protocol. For each analysis, we reserve a different partition of the dataset from

Section 5.1 for testing, and fit the model using the remaining data. We perform two

types of partitioning protocols for reserving the test set:



109

P95

200 300 400 500 600
Predicted Latency (ms)

GT
Train
Test

200

300

400

500

600

M
ea

su
re

d 
La

te
nc

y 
(m

s)

(a) random partition

P95

200 300 400 500 600
Predicted Latency (ms)

200

300

400

500

600

M
ea

su
re

d 
La

te
nc

y 
(m

s)

(b) subject partition

Figure 5.4: Model performance and generalization validation using preliminary user study dataset.

Histogram alignment between ground truth (gray) and model predictions are compared via Q-Q

plots for different train/test splits in red/green respectively. The closer the Q-Q curves are to

the diagonal, the more accurate the predictions are. P95 data volume intervals are highlighted

in gray. As defined in Section 5.2.2, (a) and (b) show the results with random partition and

subject_01’s data partition, respectively.

1. Random: a random selection drawn from all data points (20%),

2. Subject: all data from each individual subject (20%).

Metrics and results. We perform the KolmogorovśSmirnov (K.S.) goodness-of-fit

test between the reserved test data and our prediction [Massey Jr, 1951], and show the

Quantile-Quantile (Q-Q) plot [Gnanadesikan and Wilk, 1968] in Figure 5.4. The Q-Q

plot visualizes the correspondence of two probability distributions at each quantile.

Data below the 𝑦 = 𝑥 line in Figure 5.4 indicate an overestimation of saccade latencies

and vice versa for data above the line.

Figure 5.4 shows the Q-Q plot for the training and testing sets across both partition

protocols. The K.S. test fails to reject the null hypothesis that the observed user saccade

latency distribution is drawn from our model-predicted distribution for (1) the random

partition, 𝐷 = .2, 𝑝 = .99, and (2) the individual subject partitions:
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Subject ID S1 S2 S3 S4 S5

K.S. analysis
𝐷 = .3

𝑝 = .79

𝐷 = .2

𝑝 = .99

𝐷 = .2

𝑝 = .99

𝐷 = .2

𝑝 = .99

𝐷 = .1

𝑝 = 1.0

where 𝐷 is the K.S. Test statistic, and 𝑝 is significance value.

Discussion. The above analysis demonstrates that our model does not predict statisti-

cally different distributions compared to unseen observations across various partitioning

protocols. The results of the randomly partitioned study (1) demonstrate the gener-

alizability of our model across trials without observed overfitting. Analysis of the

subject-partitioned study (2) verifies our model’s applicability to unseen users, and thus

general human saccadic behaviors.

5.2.3 Predicting Saccadic Behaviors in Natural Tasks

In Section 5.1, we observed that unnoticeably subtle visual changes may induce sig-

nificantly varied reactive latencies, as was formulated and predicted by our model in

Section 5.2. In this experiment, we evaluate our model’s application in several realistic

target search scenarios such as esports, and real-world photographs.

Via a series of psychophysical studies, we seek to determine: (1) whether our

model can extend to predicting saccadic reaction latencies with natural task/stimuli; (2)

whether we can imperceptibly alter the appearance of objects while still introducing

enough reactive latency to materially influence real-world task performance. We answer

these queries in our experiment and compare our findings to the model predictions.

Participants and setup. We recruited 14 participants (ages 22− 33, 3 female) for this

series of 2AFC experiments. Two participants were excluded for inability to perform
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Figure 5.5: Setup and Results of the Natural Task Evaluation. Saccade latency modulation corre-

lates with the contrast of stimuli as shown in the three distinct scenes (and target candidates)

shown in (a)/(b)/(c). Each scene presents distinct visual characteristics including low polygon

3D scenes, dense geometries, or natural scenes. (d) illustrates the study procedure over time.

With the Control condition as reference, all others show FovVideoVDP scores above 9.5, in-

dicating identical perceptual appearance per [Mantiuk et al., 2021]. Using the shooter scene

as example, (e) shows the user latency data in histograms, and our model predicted latency

in curves. A significant agreement can be observed. Please refer to our supplementary videos

for an animated visualization. (f) shows the mean relative durations (with Control as ł0%ž

pedestal) of Deferred/Accelerated. The error bars indicate SEM. Full statistical analysis on

all scenes can be seen in Section 5.2.3. Each individual’s raw probabilistic distributions are

provided in Section 5.B. 3D asset credits: haykel-shaba (a), and Slavyer (b) at Sketchfab Inc.
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the tasks (self-reported difficulty perceiving peripheral stimuli and target identification

accuracy greater than one standard deviation below the mean), resulting in 12 final

participants. Two of the 12 participated in the preliminary study in Section 5.1. The

study was conducted during a 10-minute sessions consisting of 153 trials per scene for

each participant. The hardware and setup remain the same as in Section 5.1.

Scenes and stimuli. To simulate a broad range of applications, our user study stimuli

consisted of three groups of images: (1) a synthetic soccer scene, (2) a synthetic first-

person view as an analog for esports, and (3) digital photographs of an indoor shelf.

Each group contained 51 different images; each has the target stimuli appearing at

different locations (to avoid learning effects) on the visual field, and serve as a trial. The

background and targets from each evaluation group are shown in Figure 5.5. Although

shown in color in the manuscript for visual clarity, all images were rendered with

grayscale on display to avoid bias from color cues.

Tasks. Participants were instructed to complete a similar 2AFC decision task across

all trial. At the beginning of each trial, they were shown a background image con-

taining several task-irrelevant objects. After a randomized 1 − 1.5 second delay, an

additional task-relevant stimulus, either a target or non-target, appeared on the scene

as in Figure 5.5. Participants were shown both types of stimuli ahead of the experiment.

The task was to saccade to targets, or remain fixated if the stimulus was identified as a

non-target. This procedure allows us to measure the visual-oculomotor latency after

which a subject identifies the discernible feature of interest from the stimulus. This

emulates the common real-world scenarios where a new łintruderž of potential interest

enters the subjects’ visual fields. Please refer to our video for dynamic illustrations of

the task.
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Conditions. Across each image set, we tested three variations of the target stimulus in

order tomeasure how changes in image features affect saccade latencies. In one variation

the target stimulus had increased contrast and/or decreased frequency (Accelerated),

in another variation the target had decreased contrast and/or increased frequency

(Deferred), and a third unfiltered variation was used as a control group (Control).

Each participant performed 51 images × 3 conditions × 3 scenes, resulting in 459 trials

total, i.e., 5508 trials across the experiment. Measuring the precise frequencies affecting

saccade latency is a complex task requiring pooling from multiband. Investigating

a comprehensive pooling strategy is beyond the scope of this work. Therefore, we

approximate the representative frequency as the Laplacian pyramid layer with the

highest corresponding contrast, for those images without a uniform frequency pattern.

Contrast and eccentricity computations were trivial to compute without requiring

pooling operations.

Results. We present the results of our experiments in Figure 5.5. We again use the

K.S. statistical test to evaluate alignment between predicted and measured histograms

across the different scenes for each condition. We report the results of these tests below:

Deferred Control Accelerated

Soccer 𝐷 = .2, 𝑝 = .99 𝐷 = .2, 𝑝 = .99 𝐷 = .2, 𝑝 = .99

Shooter 𝐷 = .2, 𝑝 = .99 𝐷 = .3, 𝑝 = .79 𝐷 = .1, 𝑝 = 1.0

Photographic 𝐷 = .3, 𝑝 = .79 𝐷 = .1, 𝑝 = 1.0 𝐷 = .2, 𝑝 = 1.0.

Please refer to Section 5.B for the collected saccadic latency distributions of individual

participants and scenes.

Using the Control images as reference, we additionally calculate the FovVideoVDP

values for all images in our dataset. We find the mean values to be above 9.5 for all
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Accelerated/Deferred images, which indicates observers would be approximately at

chance for detecting differences between them.

We also debriefed each participant after the experiment on their thoughts regarding

the tasks, and most participants reported no self-awareness of reaction time difference.

Discussion. Our results demonstrate agreement between the predictions made by our

model and the observed saccadic latency distributions across 12 participants. We find

significant differences in saccadic latency across conditions, despite identical perceptual

appearance evidenced by the FovVideoVDP metrics.

Our prediction of the photographic scene results show correct trends and distribution

ratios, albeit for a scaled absolute time (in ms) relative to the measured data. We attribute

this scale variance to the fact that natural images contain wide frequency bands and our

single-frequency pooling in the Laplacian Pyramid may discard significant frequency

information. This motivates interesting future work on multi-frequency pooling models

tailored for reaction time, see Section 5.5.

5.2.4 Predicting Foveal-Peripheral Dual Task Behavior

In various real-world scenarios, humans perform tasks by jointly analyzing both foveal

and peripheral content, such as with reading, film watching, and architectural design.

In this experiment, we extend and evaluate our model to such applications considering

dual tasks.

Modeling. Our visual system processes foveal and peripheral stimuli independently

and in parallel for a variety of tasks [Ludwig et al., 2014a]. That is, the foveal and

peripheral pathways gather information concurrently, and the decision to trigger a
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Figure 5.6: Setup and results of the foveal-peripheral dual task evaluation. (a) A dual foveal-

peripheral task consists of two components: identification of both the foveal and peripheral

Gabor patches. The subject was instructed to move their gaze to the peripheral patch with

matching orientation to the foveal one. Please refer to our supplementary videos for an

animated visualization. (c) We fit our periphery-only model (𝑇𝑝 , the surface) to data from the

foveal-peripheral dual task (the sparse dots). A significant mis-alignment can be observed. (d)

Considering maximum expected latency of both foveal and peripheral contrasts enables us to

predict a more accurate relationship, 𝑇𝑑𝑢𝑎𝑙 , between the visual stimulus parameters and the

observed saccade latency data. (b) Q-Q plot visualizing the goodness-of-fit of our model relative

to the observed data. Alignment of the observed and predicted latency histograms shows that

the dual model matches well with the experimental data (gray) within the P95 confidence

interval (highlighted region). In contrast, the peripheral-only model fails to correctly predict

saccade latencies. We omit visualizations of the foveal-only model 𝑇𝑓 to avoid duplication as it

exhibits similar low performance in predictive quality to 𝑇𝑝 . The full statistical analysis can be

seen in Section 5.2.4.
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saccade waits until both processes have finished. We hypothesize that these independent

foveal and peripheral stimulus processing units operate using the integration-and-action

process as described in Sections 2.2.2 and 5.2.

In this model, processing times for both the fovea, 𝑇𝑓 , and periphery, 𝑇𝑝 , follow

Equation (2.6), and can be adapted to specific visual tasks and stimulus visual features

as shown in Equation (5.1):

𝑇𝑓 ∼ IG(𝛼 𝑓 , 𝑟 𝑓 )

𝑇𝑝 ∼ IG(𝛼𝑝, 𝑟𝑝),
(5.3)

where we create some shorthands for convenience:

𝑟 𝑓 = 𝑟 (𝑐 𝑓 , 𝑓𝑓 , 𝑒 𝑓 = 0◦)

𝑟𝑝 = 𝑟 (𝑐𝑝, 𝑓𝑝, 𝑒𝑝 = 10◦).
(5.4)

𝑒𝑝 = 10◦ because the peripheral stimulus for this experiment was at 10◦ eccentricity.

Then, as experimentally determined by prior literature on similar tasks [Ludwig et al.,

2014a], we model the total saccade latency as the maximum value of these two random

variables:

𝑇𝑑𝑢𝑎𝑙 =max(𝑇𝑓 ,𝑇𝑝). (5.5)

Setup. To evaluate our hypothetical model for dual tasks, we conducted a user study

to measure how saccade latency changes as we modulate foveal and peripheral stimuli

independently. Unfortunately, it is not possible to individually determine the 𝛼 𝑓 and 𝛼𝑝

values, because a user study for the dual task can only sample the total saccade latency

from Equation (5.5). That is, the individual distributions, 𝑇𝑓 , and 𝑇𝑝 are not measured



117

directly. Since finding these threshold values directly is not possible, we infer them

via maximum-likelihood estimation (MLE) of the overall distribution of 𝑇𝑑𝑢𝑎𝑙 , given a

dataset of size 𝑛:

𝛼 𝑓 , 𝛼𝑝 = argmax
𝑛∑︁
𝑖

log𝐿(𝛼 𝑓 , 𝛼𝑝 ; 𝑡 (𝑖), 𝜈 𝑓 , 𝜈𝑝). (5.6)

Please refer to Section 5.A for the derivation of the likelihood function for 𝑇𝑑𝑢𝑎𝑙 . The

hardware setup in this experiment is the same as described in Table 5.1.

Participants. We recruited 𝑛 = 12 participants (ages 22-33, 3 female) with normal or

corrected to normal vision for a series of 2AFC experiments. The study was conducted

during a single 10 minute session, including a total of 240 trials for each participant.

Stimuli and Tasks. At the beginning of each trial participants are shown three Gabor

patches as illustrated in Figure 5.6a: one at the fovea, and two in the left and right

peripheries at equal eccentricities of 10◦. The foveal Gabor is tilted either 45◦ or −45◦

from the vertical axis; with chance probability, one of the peripheral Gabors is selected

to have the same tilt as the foveal Gabor, while the other has the opposite tilt. The task

is to identify and saccade to the peripheral Gabor of the same orientation as the foveal

Gabor. For each trial, the central and peripheral Gabor contrast values are sampled from

[0.05, 0.22, 0.53, 1.0], drawn independently. That is, taking all combinations of central-

peripheral Gabor contrast possibilities yields a total of 16 conditions. The frequency of

all Gabors was fixed to 2.0 cpd (cycles-per-degree). Each participant also performed 15

randomly ordered practice trials before the start of the experiment.
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Results. In Figure 5.6d, we show the relationship of both foveal and peripheral

contrasts with saccade latency, as well as the ground truth data collected from our

user study overlaid on top of the surface plot. The MLE regression produces threshold

values of 𝛼 𝑓 = 3.21 and 𝛼𝑝 = 3.56. Hence, the threshold ratio between the foveal and

peripheral components is 1 : 1.04. Similar to Section 5.2.2, we present the Q-Q plot

comparing the data to our model predictions in Figure 5.6b. The K.S. statistical test

again fails to reject the null hypothesis that the observed user saccadic latencies are

drawn from our 𝑇𝑑𝑢𝑎𝑙−predicted distribution (𝐷 = 0.1 and 𝑝 = 1.0).

Models which consider only the peripheral contrast (shown in Figure 5.6c), or only

the foveal contrast fail to accurately predict the saccade latencies. We run the K.S. test

for both of these conditions and observe a significant difference between the data and

the model predictions: 𝐷 = 0.9 and 𝑝 = 0.002 for the foveal-only model, and 𝐷 = 0.8

and 𝑝 = 0.002 for the periphery-only model.

Discussion. When humans perform tasks involving both foveal and peripheral anal-

ysis, we observe that a models considering only one eccentricity fails to predict saccade

latencies, as illustrated in Figure 5.6b and demonstrated by the K.S. tests. By comparison,

the joint model we propose in Equation (5.5), inspired by prior discoveries on visual

mechanisms, successfully predicts the latency distribution.

5.2.5 Application Case Study: Esports Fairness Metric and Per-

formance Optimization

A major application of our model is to measure and optimize human performance in

competitive, real-time, or time-sensitive tasks such as defense, piloting, and esports. In

this evaluation, we use esports as an example. In real-world professional gameplay, we
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deploy our model to: 1) measure game fairness in terms of character skin design that

triggers varied gaze motion performance between two teams; 2) measure and optimize

the human target search performance under various screen resolutions, eye-display

distances, and compare the performance with traditional and immersive displays.

Data. We collected professional replay videos from a popular esports game, Counter-

Strike: Global Offense via YouTube. The data contains a ≈ half hour long video footage

where we uniformly sampled 95 frames from beginning to the end. For each frame, we

exploit the virtual human tracking model YoLO [Redmon et al., 2016] that predicts the

team ID (Counter-Terrorist, CT and Terrorist TR), and bounding boxes. We assume

the observers gaze lies in the middle of the screen, and apply our model to predict

the time when the viewer reorients their gaze to each target. We measure the visual

characteristics with a common display setting: a Samsung 32inch CH32H711 monitor,

2K 16:9 resolution, 70cm width, 300cd/𝑚2 brightness, and ≈ 1.33D (diopter = m−1)

eye-display distance (50◦ FoV).

Competition Fairness in Target Searching. The game has two opposing teams of

characters. Regardless of game task design and differences in tools, game fairness is

an important concern in esports [Chen et al., 2014]. Using our model and the detected

targets, we measure the average saccade latency of individual groups.

Figure 5.7b shows the results. We observed a significant difference between CT and

TR groups: the average normalized latencies are 0.92 ± 0.02 for searching CTs and

0.95 ± 0.04 for searching TRs, indicating a 3.3% difference. Given previous literature

indicating the mean saccade latency for CS:GO professional players to be about 282ms

[Velichkovsky et al., 2019], 3.3% results in a 9.3ms reaction variance. One-way repeated

measures ANOVA showed the group’s significant main effect on the saccadic latency,
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𝐹1,93 = 11.4, 𝑝 = .001.

The results demonstrate a statistically significant difference between the two groups,

in terms of them perceiving, processing, and reacting to appeared targets. That is, a

TR/CT saccading to the other group is significantly faster/slower with no less than

2/1 frames on a 60/120FPS displays. The speed difference is remarkably higher than

the minimum latency, as low as 4ms, that leads to altered esport performance among

top-level competitors [Kim et al., 2019]. While this may have been one of the factors

that contributed to the imbalanced competitive game performance (higher winning rate

of TR on the map we analyzed) between these two groups 1, in practice the asymmetric

weapon and task designs might also have played a role.

Optimizing Player Performance. A natural and extensively asked question is

the role of eye-display distance (e.g., regular monitors vs. VR displays) and screen

resolution in professional competitions. Using our model, we measure the statistical

saccade latency as a function of displays with the same dataset as Section 5.2.5.

Figure 5.7c visualizes our results by observing the altered reaction performance. As

before, we use the mean saccade latency for CS:GO professional players to be about

282ms [Velichkovsky et al., 2019]. First, both teams are not at their best performance

with the initial 1.33D eye-display distance, with the faster reaction of TRs searching

CTs. However, the teams reveal different trends by changing the eye’s distance (thus

FoV), which jointly alters target eccentricity (𝑒) and frequency (𝑓 ) (cf. Section 5.B).

Particularly, the minimal saccade latency towards CT targets is 273.5ms at 34.6◦ FoV

(0.9D eye-display distance). In comparison, the minimal latency towards TR targets is

266.1ms at 61.5◦ FoV (1.6D eye-display distance). The two curves intersect at 1.69Dwith

1https://www.hltv.org/stats/teams/map/31/5995/g2

https://www.hltv.org/stats/teams/map/31/5995/g2
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Figure 5.7: Results of esports video dataset analysis. (a) illustrates our simulated eye-display

spatial relationship and our CS:GO gameplay dataset (including the automated labeling of the

teams). Note that changing the eye-display distances results in varied fovs, thus changing the

perceived visual characteristics (eccentricity and frequency). (b) shows our model’s approxima-

tion of the team-wise target searching performance. The X-axis indicates the team splits. The

Y-axis shows the mean saccadic latency calculated by our model (with the annotated team as

the target team being searched, i.e., the łopposite teamž). The error bars show the standard

error. (c) shows our analysis simulating various fovs by altering eye-display distances. The

𝑥-axis indicates the fovs in degrees. The 𝑦-axis shows the predicted mean latencies with the

semi-transparent error bar as standard error. The point where the two group’s mean latencies

intersect is marked by the green circle. The lowest latencies of saccading for each team and the

simulated fovs of non-desktop display environments are dash-labeled.
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an identical latency of 266.3ms. We further simulate real-world use cases with different

displays (for instance, gaming with mobile devices or training with VR displays). In

this experiment, we use the measures from the iPhone 13 (5.78 × 2.53 inches) with

the commonly suggested 30cm (or 3.3D) eye-display distance, leading to a 25.7◦ FoV.

Under this circumstances, the saccade time to TR becomes higher than CT (324.3ms

vs 259.4ms) Similarly, the measurement with our virtual reality HMD (90◦ overlapped

FoV), the relative trend is swapped: saccading to a TR becomes shorter than to a CT,

with a 21.2ms difference (276.0ms vs 288.0ms).

The above analysis indicates the sensitivity of eye display correlation in determining

performance and fairness in time-sensitive and competitive scenarios. Surprisingly,

the statistical performance bias may swap with different eye-display relationships. For

instance, with a mobile/VR setting, the visual stimuli may bias with TR/CT players

in terms of reaction performance. In addition to the commonly referred measurement

of visual similarity and task/map fairness, our model presents a novel perspective in

competitive and highly dynamic scenario design, such as athletics, esports and defense.

5.3 Measuring Moving-Target Tracking Latency

In this second experiment, we examine decision-making latency in the context of visually

tracking dynamically moving stimuli. Specifically, we manipulate target visibility by

adjusting luminance and color contrasts, introducing external noise, and analyzing

the temporal response to visual tracking behavior. Notably, in Section 5.1.2, we briefly

discussed the possibility that contrast sensitivity-rescaled measures of visual signal

strength could drive common trends in behavioral responses. That is, regardless of

which visual features are modulated, expressing their visibility in terms of detection
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threshold contrasts (as done in many human vision computational models [Legge and

Foley, 1980; Watson and Solomon, 1997]) may lead to similar behavioral performance

patterns. By analyzing how changes in target visibility across different axes of image

manipulation affect performance, we identify common behavioral trends and ultimately

develop a computational model for predicting human performance in tracking dynamic

visual content.

5.3.1 Experimental Design

Participants. Five participants (ages 22 - 28, 3 male) with normal or corrected-to-

normal vision were recruited for a series of three psychophysical experiments. Each

experiment was conducted during a separate session, and each session consisted of two

blocks of 120 visual target tracking tasks each. Each experiment took a total of about

40 minutes to complete. All experimental protocols were approved by an institutional

review board (IRB).

Setup. Experimental stimuli were displayed on a 27.5 inch OLED monitor (LG 27GR-

95QE) with a refresh rate of 240 Hz, a spatial resolution of 2560 × 1440 pixels, and

subtended a horizontal field of view of 55◦. As shown in Figure 5.8a, participants seated

throughout the experiments, and their head positions were stabilized with a chin rest.

Eye position signals were recorded using a 150 Hz eye tracker (GazePoint 3), and was

calibrated before each block of trials.

Stimuli and design. Participants were instructed to visually track targets that ap-

peared and moved across the screen. As illustrated in Figure 5.8b, targets were solid

disks with a diameter of .5 dva (degrees of visual angle) placed on top of a neutral gray
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Figure 5.8: Experimental protocol, stimuli, and data. (a) Participants visually tracked target

stimuli that appeared on the display, and indicated via button press its direction of movement.

Eye position traces were recorded using an eye tracker. (b) Target visibility was modulated by

adjusting different visual features across the LUM, NOISE, and COLOR experiments. Stimuli

with signal strength = 1× were calibrated to be at threshold of visibility, and scaled up by signal

strength. (c) Visuo-motor adaptation onset distributions were determined by detecting the

latest saccades that moved away from the fixation zone during each trial.

background (with measured mean luminance of 54 cd/m2), and moved at a constant

speed. The visibility and speed of the targets varied across trials and constituted the

different conditions across which we compared the tracking performance. We leverage

the eye-tracking data collected as participants visually tracked the targets to quantify a

measure of performance as further detailed in the Analysis paragraph.

One of the main factors that affect the performance of visually tracking moving

targets is the speed of the target [Spering et al., 2005]. In our experiments, we varied

the target speeds 𝑣𝑡 ∈ {7.5, 15, 30} dva/s.

Additionally, as discussed in Section 2.3.4, the visibility of visual targets significantly

affects visuo-motor adaptation performance. Therefore, across our three experiments,

we modulated target visibility within three different features. Specifically, we studied

how performance is affected by luminance contrast in low external noise (LUM ex-

periment), and high external noise (NOISE experiment), as well as by color contrast
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(COLOR experiment).

In the LUM and NOISE experiments, the luminance contrast of the target varied

between conditions with zero background noise in LUM, and a uniform additive noise

with RMS contrast of 23% added to the background inNOISE. In theCOLOR experiment,

the color of the disk varied along the 𝑅𝐺 axis in 𝐷𝐾𝐿 coordinates [Derrington et al.,

1984b], while the luminance was kept equal to the background.

Across the experiments, we parameterize target visibility in detection threshold

contrast units, and refer to this parameter as the signal strength, 𝑠 . That is, for a target

stimulus with a contrast value of 𝑐 , its corresponding signal strength equals 𝑠 = 𝑐/𝑐𝑡ℎ ,

where 𝑐𝑡ℎ is the just detectable threshold contrast (i.e., inverse of the sensitivity) of

the target stimulus. In LUM and NOISE, contrast was quantified using Michelson

contrast, whereas the 𝐷𝐾𝐿 color contrast, as introduced in Section 3.1, is used in the

COLOR. Even though the specific contrast values of the targets vary significantly across

experiments, the generalized signal strength parameterization allows us to validate our

hypothesis that behavioral performance during visuo-motor adaptation demonstrates

similar first-order patterns, irrespective of the specific visual features being manipulated.

Since we require the contrast sensitivity thresholds calibrated for each individual in

each experimental task (see further discussion in Section 5.5), prior to each experiment,

the sensitivity in each task was determined via a 4-down-1-up adaptive staircase proce-

dure. The calibration featured the same disk from its corresponding main experiment,

moving either leftward or rightward at a speed of 𝑣𝑡 = 30 dva/s. Participants progressed

through the staircase by visually tracking the target and indicating the direction of the

disk’s motion via button press. Staircase steps were incremented in reciprocal contrast

units with a step size = 5 for six reversals, and the average of the last three reversals

were used to determine the sensitivity.
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Based on the calibrated contrast threshold, the signal strength of the main experi-

ments were determined. As illustrated in Figure 5.8b, across the experiments, signal

strength values of 𝑠 ∈ {1, 2, 4, 8} were used. Overall, the target’s 3 speed conditions ×4

signal strength conditions were repeated 10 times per block for a total of 120 trials.

Procedure. Each trial began with a button press. As shown in Figure 5.8a, following

a randomized stimulus onset delay of 0 − 1 s, the target stimulus replaced the fixation

crosshair and moved either leftward or rightward across the screen at a constant speed

determined by the trial condition. Randomizing the stimulus onset delay and target

movement direction minimized anticipatory eye movements. The target remained in

motion for 1 − 1.5 s before disappearing. At the end of each trial, participants indicated

via button press whether the target object moved leftward, rightward, or if they failed to

track it. Trials in which participants failed to track the target or responded incorrectly

were repeated at the end of each block.

Analysis. As motivated in Section 2.3.4, our study focuses on the initial latency

for visuo-motor adaptation, as delays in foveating and tracking a visual target can

cause missed visual details and poor task performance. Visuo-motor adaptation is

primarily driven by two concurrent neural mechanisms triggered at stimulus onset:

pursuit eye movement control and a corrective saccadic eye movement [Nachmani et al.,

2020]. Pursuit eye movement is a feedback system which is tuned to synchronize the

movements of the eye and the target so that a foveated moving target remains foveated

throughout the tracking process [Robinson, 1965]. However, the onset of pursuit eye

movement takes at least .1 s, and even longer to fully match the target’s motion following

an abrupt change in the target speed [Missal and Heinen, 2017]. During such delays,

the positional error between the target and eye positions accumulates and necessitates
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a saccade that corrects this positional error and ultimately completes the adaptation

process [Nachmani et al., 2020]. In our analysis, we leverage the onset of this corrective

saccade as an indicative marker to quantify visuo-motor adaptation latency.

To detect the corrective saccade during the onset of visuo-motor adaptation, we

utilize the recorded eye position traces. Eye position traces were smoothed by a But-

terworth filter with a 20 Hz cut-off prior to analysis. Trials where participants failed

to maintain fixation at the beginning of the trial, and failed to track the target were

excluded from analysis, and constituted 2.9% of all trials.

Specifically, we implement an objective method for determining whether the eye

position recordings are usable in further analysis. First, we segment the eye position

traces of each trial, relative to stimulus onset time, 𝑡 , into an initial fixation phase

(−0.2 ≤ 𝑡 ≤ 0.1 s) [Becker and Jürgens, 1979; De Brouwer et al., 2002], a visuo-motor

adaptation onset phase (0.1 ≤ 𝑡 ≤ 0.6 s) [De Brouwer et al., 2002], and a steady-state

tracking phase (0.6 ≤ 𝑡 ≤ 0.9 s), [De Brouwer et al., 2002; Spering et al., 2005].

Using the eye position recordings from each segment, we require that the median

fixation position be within 2 dva of the central fixation positions, and the spread of

eye positions, measured in standard deviations of the gaze distribution, to be less than

𝜎 < 1 dva. In the application studies of Sections 5.4.3 to 5.4.5, the fixation phase

tolerances were doubled due to larger tracker errors observed due to the more complex

visual stimuli presented throughout the trials. During the steady-state tracking phase,

the median offset of the eye position recording relative to the target stimulus was

required to be within 4 dva.

Figure 5.8c shows an example trace of target motion to the participant’s gaze tra-

jectory. Eye velocity was calculated using the central difference method and saccades

were detected using a fixed velocity threshold [Gibaldi and Sabatini, 2021]. Velocity
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Figure 5.9: Adaptation performance of a representative participant. Mean adaptation latencies

are plotted against signal strength, and compared across targets moving at varying speeds. Each

experiment is represented by a distinct color (see Figure 5.8b for the corresponding experimental

stimuli). Error bars denote SEM. See Figure 5.10 for plots of the remaining participants.

cut-off criteria of 12.5, 25, and 50 dva/s were applied for stimuli moving at 7.5, 15, and

30 dva/s, respectively. The main corrective saccade was identified using a positional

criterion that selected the latest saccade which shifted the eye position away from the

initial fixation distribution by more than two standard deviations towards the target.

The initial fixation distribution was established by aggregating the eye position data

within the −0.2 < 𝑡 < 0.1 s window relative to stimulus onset. Saccades detected

during 𝑡 < 0.1 s were excluded, as such movements could not have been programmed

in response to the stimulus onset [Becker and Jürgens, 1979; De Brouwer et al., 2002].

5.3.2 Results and Discussion

Results. We present our main findings for a representative participant’s experimental

data across the 12 conditions of each experiment in Figure 5.9. Adaptation latencies

improve by up to 0.166/0.117/0.130 s in LUM/NOISE/COLOR respectively, based on

both the target speed as well as signal strength. Increasing signal strength provides
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diminishing benefits until performance nears its peak at amean latency of .216/.218/.212

s across the experiments. Notably, at high signal strength, faster targets are adapted to

faster, while at low signal strength, the opposite holds.

Two-way ANOVA tests revealed a significant main effect of target speed (𝑝 < 0.01)

and signal strength (𝑝 < 0.001) on adaptation latency across all experiments, indicating

that target speed and signal strength strongly influence adaptation latency. Additionally,

there was a significant interaction between target speed and signal strength across

all experiments (𝑝 < 0.001), suggesting that the effect of object speed on adaptation

latency depends on the level of signal strength.

The Spearman correlation of mean adaptation latencies found between LUM &

NOISE, LUM & COLOR, and NOISE & COLOR experiments were 𝜌 = 0.96 (𝑝 < 0.001),

𝜌 = 0.94 (𝑝 < 0.001), and 𝜌 = 0.99 (𝑝 < 0.001) respectively, indicating a very strong

positive monotonic relationship. These results suggest that the adaptation latencies

measured in each experiment are highly correlated to each other with a high degree of

consistency for the individual.

The remaining four participants demonstrate similar trends (Figure 5.10) and statis-

tical significances across conditions and experiments. All the 15 experimental datasets

exhibit a significant signal strength effect on latency. Among them, 12 exhibit significant

target speed effects on latency, and 12 exhibit a significant interaction.

Discussion. The ANOVA results of our three experiments indicate that both target

speed and signal strength significantly influence visuo-motor adaptation latencies.

Thus, these factors should be considered independently, as evidenced by the significant

interaction between them. As shown in Figure 5.9, increasing signal strength accelerates

adaptation latencies. These results broadly match our results from Section 5.1.
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Figure 5.10: Adaptation performance of main study participants. Mean adaptation latencies of

main study participants are visualized in the same style as in Figure 5.9.

Crucially, our results show that apart from target visibility, its speed also affects

adaptation performance. Faster speeds impair adaptation latencies at low signal strength

conditions, suggesting that the target tracking task becomes more challenging. We

hypothesize that this decline in performance occurs because faster-moving low visibility

targets exit the fovea and enter peripheral vision more quickly, where visual acuity is

reduced, and target localization becomes more challenging. However, the effect of this

performance deterioration might not apply when the signal strength is high and the

target can be localized easily even in the periphery.

Our analysis of the correlation in adaptation latency across different visual features

modulated by their signal strength suggests that the underlying neural mechanisms

governing the onset of visuo-motor adaptation rely on a unified signal encoding the

overall visibility of visual targets. While further investigation is needed to validate
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this hypothesis, these distinctions are less critical in the context of computer grahpics

applications. The presence of such first-order effects is sufficient to develop computa-

tional models for downstream applications. In the next section, we will integrate all

experimental data collected in our studies to construct a human behavioral model for

predicting visuo-motor adaptation latency.

5.4 Behavioral Model of Moving-Target Tracking La-

tency

5.4.1 Model Specification

As discussed in Section 5.3.2, increasing signal strength yields diminishing performance

benefits, in agreement with prior work indicating that adaptation latency plateaus

and performance saturates beyond a certain ceiling [Spering et al., 2005]. Just as in

Section 5.2, we model the onset of the catch-up saccade during the visual-tracking task

via the DDM. Notably, the trend of reaction latencies appear to be consistent across

different visual feature modulations, and saturate toward a performance ceiling. Thus,

we model the evidence accumulation rate, 𝑟 , as a sigmoid function:

𝑟 (𝑠) = (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)
1 − 𝑒−𝜆𝑠
1 + 𝑒−𝜆𝑠 + 𝑟𝑚𝑖𝑛, (5.7)

where 𝑟𝑚𝑎𝑥 is the peak evidence accumulation rate, 𝑟𝑚𝑖𝑛 is the minimum rate with

𝑟 (𝑠 = 0) = 𝑟𝑚𝑖𝑛 , and 𝜆 determines the slope of the sigmoid.

To enable the model to predict the adaptation rate across different target speeds,

𝑣 , we fit polynomial functions to 𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑖𝑛 , and 𝜆 based on our experimental data.
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Figure 5.11: Model visualization. The predicted mean adaptation latencies of our model fitted

to all experiment data, compared to the mean latency data it was fit on. Adaptation latencies

for each target speed, and signal strength conditions are depicted in different colors, along

with overlaid level sets indicating equivalent performance. Measured latencies are shown as

individual points using the same color mapping.

Polynomial fits to the LUM data from Figure 5.9 yields the following coefficients:

𝑟𝑚𝑎𝑥 (𝑣) = −4.82 + 7.15𝑣 − 1.60𝑣2

𝑟𝑚𝑖𝑛 (𝑣) = 3.62 + .763𝑣 − .113𝑣2

𝜆(𝑣) = −.174 + .441𝑣 .

(5.8)

5.4.2 Model Evaluation

To effectively evaluate our behavioral model, we aim to (1) validate the model’s ability

to generalize by showing that a model fitted to one type of visual feature variation (e.g.,

luminance in low/high external noise conditions or color) can successfully predict behav-

ior for a different visual feature, and (2) demonstrate that the model’s parameterization

accurately captures the underlying patterns of behavior observed in Section 5.3.2.
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Generalizability. We fit our model’s parameters described in Equations (5.7) and (5.8)

to the LUM, NOISE, and COLOR experimental results, separately, and measure how

well each model’s predictions agree with the results of the other two experiments.

The 𝑅2 scores for the LUM model were .99/.90/.93 across the LUM/NOISE/COLOR

datasets respectively. Similarly, NOISE and COLOR model scores were .90/.97/.79 and

.95/.83/.99 respectively. As expected, 𝑅2 scores are highest for models evaluated against

their respective trained datasets. Crucially, we observe that each model presents high

fitting scores across all datasets (𝑅2 > .79), indicating that our signal strength-based

model generalizes across different visual features [Chatterjee and Hadi, 2015].

Accuracy. We use a leave-one-out strategy to evaluate fitted models against unseen

data, similar to prior work [Duinkharjav et al., 2022a] Model parameters in Equation (5.8)

are fitted using data from four participants, and goodness-of-fit is assessed on the

remaining participants. The 𝑅2 scores for each participant (.80/.96/.92/.72/.72) indicate

that our model effectively captures behavioral trends excluded from the fitting process.

5.4.3 Application Case Study: Performance-Aware Video Quality

Assessment

Our visuo-motor adaptation performance model allows us to highlight multiple appli-

cations in computer graphics. A frequently overlooked challenge in producing highly

dynamic films and animations is ensuring that rapidly moving targets remain trackable

and successfully capture viewers’ attention, enabling both comprehension and engage-

ment [Smith, 2013]. Employing our model to computationally analyze animations can

highlight events where the observer would miss crucial details without the need for

human agents to detect them manually. In this case study, we demonstrate that our
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model is able to predict such events even in the presence of complex stimuli and scene

backgrounds.

Participants and setup. Fourteen participants2 (ages 22 - 28, 6 female) with normal

or corrected-to-normal vision were recruited for a similar psychophysical experiment

as in Section 5.3.1, where they were asked to complete a series of visual target tracking

tasks. The overall experimental setup and protocols remain the same, but featuring

major changes in the visual stimuli.

Stimuli and design. During each trial, as shown in Figure 5.12a, participants viewed

a scene featuring a soccer goal-keeping video and were instructed to visually track a

target ball (Figure 5.12c) moving either leftward or rightward. The target’s motion and

visibility were modulated across conditions, with two target speeds (𝑣 ∈ {14, 34} dva/s),

and three target visibility levels (𝑠 ∈ {1.5, 6, 8}).

To simulate more realistic motion, target speed was controlled by applying a force

to the ball rather than maintaining a constant velocity. Target speed was calculated by

averaging the ball’s velocity over the first .2 s of motion. Each condition was repeated 20

times for a total of 120 trials and was completed in about 25 min during a single session.

To avoid learning effects from repeated exposure to the same clips, each instance of a

condition included slight variations in motion trajectories and camera angles. Before

the experiment, participants completed an adaptive staircase to calibrate the global

contrast of the video to determine the just-detectable threshold of successfully tracking

the target.

2Two participants (1 female) were excluded for inability to perform the tasks (excessive blinking from
dry eyes which disrupted eye-tracking accuracy, and colorblindness).
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Figure 5.12: Scene, stimuli, and results of the application case study for videos and games. The

scenes evaluated were a soccer field (a) and an FPS game map (b). The stimuli were altered

along global luminance contrast in (c) and color contrast in (d). The study results are shown

in (e) and (f). The individual points reflect mean responses for each participant, color coded

by target velocity. Error bars above the scatter plots indicate SEM of the difference between

target velocity within each signal strength, and between different signal strengths overall. ***p

< 0.001, **p < 0.01, *p < 0.05
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Analysis and results. Adaptation latency measurement analysis was unchanged

from Section 5.3.1, albeit with more relaxed gaze tracking error criteria. Following the

same baseline reaction time normalization methodology as in Section 5.2, we use the

𝑠 = 8 condition as the baseline condition. Adaptation latencies for other conditions

were rescaled so that latencies in the benchmark condition were normalized across

participants.

A two-way ANOVA reveals a significant main effect of both signal strength (𝐹 =

24.12, 𝑝 < 0.001) and target speed (𝐹 = 13.53, 𝑝 < 0.01) on adaptation latency, with

a significant interaction between groups (𝐹 = 20.54, 𝑝 < 0.001). Mean adaptation

latencies were aggregated from each participant, and were compared to our model

predictions in Figure 5.12e. A repeated measures ANOVA on the mean adaptation

latencies reveals a significant effect of target speed on adaptation latency for both

𝑠 = 1.5 (𝐹 = 24.96, 𝑝 < 0.0001) and 𝑠 = 6 (𝐹 = 6.71, 𝑝 < 0.05) conditions.

Discussion. The study suggests that our model is able to effectively predict time

periods during which observers are not able to visually track and thus comprehend

visual details of target stimuli, even when the target and scene backgrounds are more

visually complex. The model reflects the significant effects of signal strength and target

speed on adaptation latency as discussed in Section 5.3.2. Since both signal strength and

target speed significantly impact latency, this evaluation underscores the importance of

including target speed in modeling adaptation latency.
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5.4.4 Application Case Study: Controlling Difficulty of Visual

Tasks in Gaming

In dynamic gaming environments, the complexity of visual target movement patterns

can impact players’ ability to react and engage with in-game events [Durst et al., 2024].

Moreover, player skill has been shown to correlate with their performance in low level

gaze behaviors [Velichkovsky et al., 2019]. Consequently, the ability to predict and

control users’ behavioral performance by adjusting visual targets with complex target

motion patterns can be a highly beneficial tool for game design.

In this section, we explore whether our model can predict human responses to

complex target motion patterns towards being deployable in downstream applications

in the gaming space. Specifically, we examine the performance of executing a visuo-

motor adaptation from an initial non-zero velocity state to another velocity state. The

study was completed by the same participants as Section 5.4.3, following nearly identical

procedures, except for differences in environment and target stimulus appearance.

Stimuli and conditions. At the start of each trial, as illustrated in Figure 5.12b, a

solid disk target of the same design as in the COLOR experiment appeared to replace

the fixation crosshair, and moved at an initial speed of 𝑣0 ∈ {0, 10} dva/s. After 1 − 1.5

s, the target’s speed suddenly changed by Δ𝑣 = 20 dva/s in either horizontal direction.

Throughout every trial, the camera moved in a random forward direction. Target

visibility conditions and number of repetitions remained unchanged as in Section 5.4.3.

Analysis and Results. To effectively analyze the onset of adaptation from the initial

velocity condition to the latter, we required an adjustment to our adaptation onset

detection protocol. To this end, we added a velocity offset to each trial’s gaze recording
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equal to its corresponding 𝑣0 value. This velocity łnullingž process adjusts the target

trajectory to be approximately in the retinal reference frame of the participant if they

were tracking the target during the initial velocity tracking phase perfectly. We applied

our same analysis procedure as in Section 5.4.3 on this nulled position trace to detect

adaptation latencies.

A two-way ANOVA reveals a significant main effect of both signal strength (𝐹 =

210.99, 𝑝 < 0.001) and target speed (𝐹 = 20.84, 𝑝 < 0.001) on adaptation latency, but

with no significant interaction effect. Mean adapataion latencies were aggregated as in

Section 5.4.3, and compared to model predictions in Figure 5.12f. A repeated measures

ANOVA on the mean adaptation latencies reveals a significant effect of target speed on

adaptation latency for both 𝑠 = 1.5 (𝐹 = 24.96, 𝑝 < 0.0001) and 𝑠 = 6 (𝐹 = 6.71, 𝑝 < 0.05)

conditions.

Discussion. We see that, despite the added complexity of the initial velocity condition,

the behavioral trends remain consistent with our model predictions. Notably, a faster

initial velocity significantly increase adaptation latency, as shown in Figure 5.12f. This

motivates interesting future work on understanding object tracking while the eyes are

already engaged in pursuit.

Overall, our model successfully captured adaptation performance trends, even

under extremely challenging visual conditions. Observers faced increased target move-

ment complexity, global optic flow from camera motion, and an off-white background

adaptationÐconditions not tested in our prior experiments. The consistency of the

behavioral trends in these scenarios suggests that our findings can reliably extend to

more complex and interactive target contexts while continuing to provide valuable

predictions about user adaptation behavior.



139

5.4.5 Application Case Study: Content Optimization for Eye-

Display Distance

In computer graphics applications, eye-display distance often changes due to ergonomics

and display environments (e.g., VR/AR headsets), affecting perceived size, and speed of

observed content. Not only does our work suggest that users’ visuo-motor adaptation

performance is affected by changes in content speed, but it’s also affected by changes

in content size as well; visual stimulus size modulates users’ contrast sensitivity to the

stimulus [Barten, 1999b], and by extension modulates signal strength as well. By jointly

accounting for the change in contrast sensitivity, and target speed due to changes in

display viewing conditions, we are able to bootstrap our behavioral model to make

significantly more powerful predictions.

As a proof-of-concept visualization, in Figure 5.13 we show how the visuo-motor

latency of adapting a 𝑑 = 1 inch wide visual target with a spatial frequency of 1 cycles-

per-degree moving at 𝑣 = 5 inch/s across a 27 inch display changes as a function of

both its luminance contrast, and eye-display distance. We compute the underlying

signal strength (visualized as a colormap) for each contrast and eye-display distance

condition by applying Barten’s contrast sensitivity function on the described stimulus,

and overlaid the resultant adaptation latency prediction according to our model.

5.5 Discussion

In our first experiment, we examined how human behavior is influenced by a few key

factors that strongly impact decision-making. However, our resulting model was fairly

limited in its ability to generalize to visual patterns beyond those studied in this work.

As discussed in Section 5.2.3, while our predictions broadly aligned with measured
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adaptation latencies are visualized as solid contour plots overlaid on a colormap of the signal

strength which was estimated using Barton’s contrast sensitivity function for the stimulus

described in Section 5.4.5. Signal strength contours are visualized via dotted lines.

responses, the approach of pooling band-pass-segregated visual features to predict

visual performance may not be fully robust.

Additionally, this study did not account for scenarios where other factorsÐsuch

as color, noise, and temporal changesÐcould further influence performance. Without

direct measurements encompassing all possible combinations of these factors, it is

challenging to apply our model beyond the specific contrast, frequency, and eccentricity

measures we investigated.

In the subsequent experiment described in Section 5.3, we incorporated some of

these considerations and further refined our approach to measuring and modeling

human temporal eye movement behavior. A core objective of this follow-up study

was to determine whether general principles of target visibility could facilitate the

extension of behavioral models to a broader range of conditions. We envisioned that

recent advancements in multi-dimensional target visibility models [Cai et al., 2024;

Mantiuk et al., 2022] could contribute to behavioral research by complementing our
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findings. Indeed, strong evidence suggests that using target visibility (or signal strength)

as a unifying metric for visual target appearance provides a promising framework for

systematically studying its effects on visual performance. If this approach holds, we

could leverage existing models of visual detection and discrimination to compute target

signal strength and then apply a general performance model that depends solely on

this parameter.

However, our static target saccadic reaction time experiments in Section 5.1 reveal

conflicting evidence: targets appearing in the mid-periphery elicit faster reactions than

those in the fovea. This finding complicates the formulation of broad generalizations

about the relationship between target signal strength and reaction time performance.

As a next step, a systematic exploration of the relationship between visual sensitivity

and behavioral performance patterns may provide a clearer understanding of how these

mechanisms interact.

Beyond investigating the influence of visual target factors on the low-level behavioral

performance metrics studied here, it is also crucial to explore higher-level measures of

behavioral performance as well. While our work has focused exclusively on low-level

performance, most real-world applications are influenced by higher-level factorsÐsuch

as long-term cognitive behavior [Rosenholtz et al., 2012], visual attention [Krajancich

et al., 2023; Rensink et al., 1997], and task and image salience and familiarity [Jarvenpaa,

1990; Rosenholtz, 2020]Ðwhich play a significant role in determining task difficulty.

Ultimately, gaining a more comprehensive understanding of how limitations in low-

level visual behavior shape higher-order decision-making would enable the design of

more effective human-interactive systems.

A core aim of our work is to establish is how target visibility and motion jointly

influence our adaptation efficiency. Since establishing a fine-grained and comprehensive
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visibility function for signal strength itself is not our focus, we performed a calibration

procedure for individual participants. We envision that recent advancements in cross-

population and unified visibility models [Cai et al., 2024; Mantiuk et al., 2022] may shed

light on a statistical model to bypass individual calibrations.

In Section 5.4.4, we validated the non-effect from camera motion-induced retinal

optical flow during first-person shooter gameplay. In the experiments, participants

were instructed to track a single moving target. However, in real-world scenarios,

multiple peripheral targets may appear andmove anisotropically, potentially influencing

localization performance [Ludwig et al., 2014b]. A promising future research direction

could be exploring the motor adaptation performance in the visual optical flow space

to establish a robust and generalizable model for complex interactive applications.

Our current measurements and model are based on common desktop applications,

where observers remain stationary while viewing the display. In emerging head-tracked

displays, such as VR/AR headsets, vestibular cues may interact with and enhance visual

localization [Fetsch et al., 2009], thereby improving oculomotor adaptation performance.

While controlling observers’ head motion is challenging, the emerging large-scale

egocentric head-eye motion dataset [Grauman et al., 2022] may enable a characterized

visuo-vestibular-motor joint modeling.

5.A Deriving Equation (5.6)

We are interested in deriving an expression for the probability distribution function for

𝑇𝑑𝑢𝑎𝑙 as shown in Equation (5.5).

𝑇𝑑𝑢𝑎𝑙 =max(𝑇𝑓 ,𝑇𝑝).
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We know that both 𝑇𝑓 and 𝑇𝑝 are Inverse Gaussian (IG) random variables as detailed in

Equation (5.3),

𝑇𝑓 ∼ IG(𝛼 𝑓 , 𝜈 𝑓 )

𝑇𝑝 ∼ IG(𝛼𝑝, 𝜈𝑝).

The probability that 𝑇𝑑𝑢𝑎𝑙 is less than some time 𝑡 is equivalent to the statement that

both 𝑇𝑓 and 𝑇𝑝 are less than 𝑡 . I.e.,

P(𝑇𝑑𝑢𝑎𝑙 ≤ 𝑡) = P(𝑇𝑓 ≤ 𝑡)P(𝑇𝑝 ≤ 𝑡), (5.9)

or,

𝐻𝑑𝑢𝑎𝑙 (𝑡) = 𝐻 𝑓 (𝑡)𝐻𝑝 (𝑡), (5.10)

where 𝐻 𝑓 denotes the cumulative density function (CDF) of the IG distribution with

parameters 𝛼 𝑓 and 𝜈 𝑓 , and vice versa for 𝐻𝑝 . The probability density function of𝑇𝑑𝑢𝑎𝑙 is

therefore equal to the derivative of 𝐻𝑑𝑢𝑎𝑙 .

Taking the derivative from Equation (5.10) we get,

ℎ𝑑𝑢𝑎𝑙 (𝑡) = ℎ 𝑓 (𝑡)𝐻𝑝 (𝑡) + 𝐻 𝑓 (𝑡)ℎ𝑝 (𝑡). (5.11)

Since we have an explicit expression for the PDF of 𝑇𝑑𝑢𝑎𝑙 , we can finally write down
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an expression for the likelihood function from Equation (5.6) as

𝐿(𝛼 𝑓 , 𝛼𝑝 ; 𝑡, 𝜈 𝑓 , 𝜈𝑝) = ℎ (𝑡 ;𝛼 𝑓 , 𝜈 𝑓 )𝐻 (𝑡 ;𝛼𝑝, 𝜈𝑝)+

+ 𝐻 (𝑡 ;𝛼 𝑓 , 𝜈 𝑓 )ℎ (𝑡 ;𝛼𝑝, 𝜈𝑝),
(5.12)

where ℎ and 𝐻 are the PDF, and CDF functions of the IG distribution.

5.B Field-of-view vs Eccentricity & Frequency

The observed image characteristics of stimuli shown on a display vary depending on

how far the display is from the eye. We correlate these effects using the field-of-view

that the display occupies as a measure of eye-distance. FoV is an intuitive way to

measure eye-distance as it can be used regardless of the specific dimensions of a given

display.

Given a display with width𝑤 , presented at an FoV of 𝜃fov, the distance of the display

equals

𝑑 =
𝑤/2

tan(𝜃fov/2)
. (5.13)

If an observer is staring at the center of the display at FoV of 𝜃fov (or equivalently at a

distance of 𝑑), an object 𝑥cm away from the center of the display will appear at

𝜃 = arctan
𝑥

𝑑
= arctan

(
𝑥
tan(𝜃fov/2)

𝑤/2

)
(5.14)

retinal eccentricity. Hence, we notice that changing the eye-distance of a display alters

the eccentricity at which stimuli appear in the retina.

Additionally, we can use this relation to derive a rate-of-change coefficient between
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physical distances (in cm), and retinal eccentriticies (in degrees) by taking the derivative

of Eq. (5.14),

𝑑𝜃

𝑑𝑥
=
cos2 𝜃

𝑑
= cos2 𝜃

tan(𝜃fov/2)
𝑤/2 . (5.15)

This measure of łdegrees-per-distancež allows us to derive the relationship between

the spatial frequency of a pattern shown on the screen, 𝑓display (in cycles-per-centimeter),

and the retinal frequency that an observer perceives, 𝑓retina (in cycles-per-degrees),

𝑓retina = 𝑓display
1

cos2 𝜃

𝑤/2
tan(𝜃fov/2)

. (5.16)

Note that the observed frequency not only depends on the FoV, but also the eccentricity

at which the stimulus is shown. For the simplest case where the stimulus is at the center

of the screen, or 𝜃 = 0, the relationship simplifies to

𝑓retina = 𝑓display
𝑤/2

tan(𝜃fov/2)
. (5.17)
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Figure 5.14: Aggregated data of the pilot experiment. Each subject completed 50 repetitions

for each of the 45 conditions across 10 blocks of the user study. Each vertex in these surfaces

represent the mean saccade latency of 50 trials with the same condition for each subject.
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Figure 5.15: Saccade latency histograms for Figure 5.5. Each subject completed 51 trials for

each condition, for each scene for a total of 459 trials. The latencies have been normalized to a

common mean to enable quick comparisons between histograms.



148

Chapter 6

Eye Movement Motor Control

Performance

Visual acuity, beingmuch higher in the central region of the retina, encourages observers

to shift their gaze to bring targets of interest into the fovea prior to analyzing any details.

The speed of these movements are critical in complex tasks such as driving, where we

rapidly move our eyes to acquire a plethora of information from the surroundings such

as the presence of pedestrians, the approaching of vehicles, the speedometer reading,

and even GPS navigation instructions.

We discussed in Section 2.3.4 that different gaze movement patterns are dictated by

the strengths and limitations of the visual system. Due to the underlying neurological

and mechanical limitations of eye movements, each one exhibits distinct performance

characteristics; some are slow and steady, while others are ballistic and jerky. The

combination of all classes of movements forms an efficient and comprehensive overall

gaze behavior strategy in 3D visual environments.

In this chapter we ask łhow long is the delay between beginning a gaze shift and
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completing it, and how does it depend on the displacement of our gaze location?ž. With

the emerging adoption of virtual/augmented reality (VR/AR), answering this question

enables us to design 3D content that allows for an efficient target changing. We present

the first operational model that predicts the required eye movement completion time

necessary for shifting the gaze to new 3D targets in stereoscopic virtual environments.

We recognize the current lack of first-principle consensus on how vergence/com-

bined eye movements are neurologically constructed (see Section 2.3.4). Additionally,

we note that noise in both human behavior and eye-tracking adds difficulty to com-

prehensive study of complex stereoscopic movements with downstream applications.

Circumventing these obstacles, we take a holistic approach to (1) focus on when both

eyes land on a target after its onset, instead of the intermediate trajectory; and (2)

form a computational model which accounts for the noise and variability to produce a

probabilitic prediction, instead of a deterministic one.

We fit our model and validate its accuracy using our psychophysical study data,

which includes more than 12, 000 individual trials to measure the temporal offsets

of gaze movements in a stereo VR environment. The results evidence the model’s

consistent prediction accuracy, generalizability to unseen participants and trials, as

well as the capability of forecasting and optimizing task performance with various real-

world VR scenarios. Our model can be applied to measure the difficulty of video games

in VR and how the scale of variability in depth can alter gaze movement behaviors

for users. We also explore how completion time predictions can be used as a metric

for evaluating the placement of 3D UI elements in VR/AR applications. Recalling the

driving example, we can improve driver awareness by placing a virtual car dashboard

overlay (with speedometer readings and navigation instructions etc.) in an adaptive

manner to minimize completion times of objects that appear in the driver’s periphery
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in changing surrounding environments.

This research aims to propose an operational model for computer graphics applica-

tions for a behavioral phenomenon that is yet to be fully understood. We believe that

providing a quantitative understanding of how emerging VR/AR technology influences

statistical signatures of human target-changing performance during daily tasks is benefi-

cial even without the neurological understanding of the underlying behaviors. We hope

the research can serve as a novel benchmark to guide 3D interfaces and act as a metric

for the user performance in various applications and mediums. Source code and data for

this chapter’s contents are available at www.github.com/NYU-ICL/stereo-latency.

6.1 Measuring and Predicting Stereoscopic Eye Move-

ment Completion Time

To quantitatively understand combined stereoscopic eye movements, we first performed

a psychophysical experiment with a wide field-of-view stereo VR display. The study

measured how jointly varying vergence and saccade amplitudes influence the time

required for an observer’s eyes to reach a 3D target relative to stimulus onset; this

duration is often referred to as the eye movement offset time. The data then serve as

the foundation of our model (detailed in Section 6.1.1) for predicting the offset timing

of various eye movements.

Participants and setup. Eight participants (ages 20-32, 6 male) with normal or

corrected-to-normal vision were recruited. Due to the demanding requirements, estab-

lished low-level psychophysical research commonly starts with pilot studies involving a

small number of participants and leverages the collected data to develop computational

www.github.com/NYU-ICL/stereo-latency
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Figure 6.1: Definition of measured angles. We illustrate how we define and measure the angles

of eye vergence movements 𝛼v, and saccadic movements 𝛼s throughout the chapter. For further

intuition, the physical distance of objects appearing at 𝛼s = 0◦ is illustrated in units of meters,

and Diopters (i.e., reciprocal of meters). Here, inter-pupillary distance (IPD) is chosen to be

equal to the human average of 63 mm [Fesharaki et al., 2012]. The optical display depth of the

headset is overlaid as a horizontal black bar at a depth of 0.85 m, or 1.2 D.

models (e.g., the foveated rendering literature [Krajancich et al., 2021, 2023; Patney

et al., 2016; Sun et al., 2020]). These models, constructed using data from a limited set of

subjects, can be evaluated for their cross-subject generalizability using a larger group of

users, as we performed in Section 6.2.3 with 12 additional unseen participants. Moreover,

in the context of our work, psychophysical studies examining the temporal dynamics of

human behaviors require remarkably large sample sizes for a comprehensive statistical

pattern to account for neural and mechanical noise [Bucci et al., 2006; Collewijn et al.,

1995; Erkelens et al., 1989; van Beers, 2007; Yang and Kapoula, 2004]. Considering that

variations among subjects do not exhibit a significant impact on the completion rate of

low-level gaze movements like saccades [Bahill et al., 1975b] and vergence movements

[Collewijn et al., 1995; Erkelens et al., 1989]Ðas confirmed by our cross-validation

analysis in Section 6.2.2Ðand given that these are objective psychophysical behaviors
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not reliant on subjective reporting, we chose to enlist a small number of participants

while acquiring an extensive sample size (1,500+ trials) per participant. To this aim, we

split the study across multiple days for every participant (see Conditions paragraph for

details).

Table 6.1: Varjo Aero specifications.

Resolution Frequency Peak Luminance
2880 × 2720 90 Hz 150 cd/m2

Focal Distance FoV Supported IPD
0.85 m 134◦ (diagonal) 59 − 71 mm

Eye Tracker Frequency Accuracy
200 Hz < 1◦

The study was conducted with a Varjo Aero head-mounted VR display (HMD) with

the relevant specifications detailed in Table 6.1. As shown in Figure 6.2a, throughout the

study, participants wearing the HMD remained seated and performed the visual-target-

changing task as detailed in the Task and Stimuli paragraph. Before the experiment,

participants underwent a łpreamblež checklist to ensure proper task completion and

accuracy, including:

1. Measure and calibrate the HMD’s inter-pupillary distance (IPD).

2. Complete a five-point calibration for accurate binocular gaze tracking (repeat

whenever the HMD is re-mounted after breaks).

3. Adjust a fixation point between the nearest and furthest depths at which experi-

mental stimuli appeared to ensure the success of fusing the stereoscopic visual

stimuli (i.e., no double-vision).

Task and stimuli. Participants’ task was to shift their gaze to land on targets ap-

pearing in 3D space. At the beginning of each trial, they were instructed to observe the
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fixation stimulus at the center of the screen. As illustrated in Figure 6.2a, this stimulus

included a combination of a cross and four circular flankers to assist fixation [Thaler

et al., 2013]. Once successful fixation was detected, this stimulus disappeared and

was immediately replaced by a target stimulus, to which participants were instructed

to move their gaze to as naturally as possible with a single gaze motion. The target

stimulus was a Gaussian blob with 𝜎 = 0.25◦ and peak luminance of 150 cd/m2 Ð a

similar design as in Lisi et al. [2019].

To ensure stable tracking, a trial only began if the participant’s eyes were within

1.2◦ to the center of the fixation point for a consecutive 0.4 s. If the participant failed to

hold their gaze at the fixation point for sufficient duration more than three consecutive

times, the eye-tracker was re-calibrated. Additionally, to ensure correct task completion,

we rejected and repeated a trial if it was completed in less than 0.1 s or more than 1.3 s.

To avoid fatigue, participants were shown a darkened screen between trials as a cue

to blink or close their eyes, if they: (1) successfully completed a trial, (2) failed to hold

their gaze on the starting fixation point, or (3) failed a trial.

Definitions and annotations. Offset times are known to vary depending on the

spatial location of the stimuli, mostly due to the varying contributions of either saccadic

or vergence movements, often superimposed on each other [Zee et al., 1992]. In order to

study how the spatial placement of the stimuli influences what type of eye movements

arise, we parameterize spatial locations using two parameters: the vergence angle, 𝛼v,

and the saccade angle, 𝛼s, as illustrated in Figure 6.1. All locations in the transverse

plane containing the participants’ eyes, and the stimuli can be encoded using the two

degrees of freedom provided by 𝛼v and 𝛼s.

Specifically, following vision science practice, we define the vergence angle as the
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angle formed by the intersection of the gaze rays. That is, if we denote the signed angles

of the left and right eyes, with respect to the forward ł𝑧ž direction (i.e. the intersection

between the transverse and median planes) as 𝛼l and 𝛼r, the vergence angle is equal to

𝛼v = 𝛼l − 𝛼r. (6.1)

The set of gaze locations that have the same 𝛼v form an isovergence circle, visualized as

the orange circles in Figure 6.1. Pure vergence movements maintain the direction of

gaze and move the gaze point from one isovergence circle to another.

On the other hand, the saccade angle, 𝛼s, is defined as the mean of the angles of the

left and right eyes:

𝛼s = (𝛼l + 𝛼r)/2. (6.2)

The set of gaze locations that have the same 𝛼s form a ray representing the direction of

gaze, visualized as the blue lines in Figure 6.1. Pure saccadic movements remain on the

same isovergence circle while rotating the direction of gaze across the transverse plane.

Therefore, a vergence and saccade angle pair, 𝜶 = (𝛼v, 𝛼s), uniquely defines a point

on the transverse plane via the intersection of the isovergence circle which corresponds

to 𝛼v, and the direction of gaze which corresponds to 𝛼s. An arbitrary gaze movement

in this coordinate system can be represented as a displacement vector,

Δ𝜶 = 𝜶 t − 𝜶 o
= (𝛼 tv − 𝛼ov, 𝛼 ts − 𝛼os ) = (Δ𝛼v,Δ𝛼s), (6.3)

for movement from 𝜶 o(rigin)
= (𝛼ov, 𝛼os ) to 𝜶 t(arget)

= (𝛼 tv, 𝛼 ts).
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Conditions. We define a condition by a pair {𝜶 o,Δ𝜶 }. We sought to create a grid of

experimental conditions which cover a wide set of possible gaze movements. Today’s

VR devices limit the breadth of applicable eye movements. Here we discuss these

limitations as well as the solutions we implemented to ensure study accuracy.

First, we observed that participants could not fuse a stereo stimulus when it was

placed too close, causing double (yet in-focus) vision. This restricted the range of

possible vergence movements we could study in VR. We believe this effect is due to the

lack of support for variable accommodation in VR displays, and thus distorted depth

cues due to the vergence-accomodation conflict [Aizenman et al., 2022; Hoffman et al.,

2008; March et al., 2022]. To establish a conservative minimum depth with successful

stereo stimulus fusion, we performed a pre-study test with 4 participants with various

inter pupil distances (IPDs) (64 − 71 mm). Through this experiment, we established

that this depth is approximately 𝑑min = 0.4 m in front of the observer. This corresponds

to a maximum vergence angle coordinate of 𝛼max
v = 8.4◦ for an observer with an IPD

of 𝑤min
IPD = 59 mm Ð the lowest IPD supported by the HMD (see Table 6.1). Since a

larger IPD only relaxes this maximum value, we limit the maximum vergence angle to

𝛼max
v ≤ 8.4◦. See Section 6.A for a more in-depth analysis.

Second, we found that the accuracy of the HMD eye tracker deteriorates significantly

further in the periphery for 𝛼s ≥ 15◦. We recognize that the majority of saccades

naturally performed by humans have amplitudes 𝛼s ≤ 15◦ [Bahill, 1975], due to a

preference to move the head otherwise. Therefore, we limit the maximum saccade angle

to 𝛼max
s ≤ 15◦.

Lastly, due to the inconsistent nature of temporal human behavior, our study requires

many repeats for each condition in order to reveal statistical trends. It is therefore

infeasible to include a large number of conditions in our study. We address this by only
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sampling gaze movement displacements, Δ𝜶 . That is, although the initial gaze position

𝜶 has been shown to be a relevant factor influencing offset time [Templin et al., 2014],

we chose not to consider it in our analysis and modeling for the current study. We leave

characterizing the effects of łstarting posež as future work.

To summarize, our study design is constrained to vergence angles 𝛼v ≤ 8.4◦, saccade

angles 𝛼s < 15◦, as well as to only consider gaze movement displacements, Δ𝜶 , and

to ignore initial gaze positions, 𝜶 𝑜 . Within these constraints, we sample the following

conditions for vergence, saccade, and combined motions respectively:

· 2 vergence conditions with amplitudes ( |Δ𝛼v | ∈ {4.2◦, 8.4◦}) conducted for both

divergent (−) and convergent (+) movements,

· 3 saccade conditions with amplitudes (Δ𝛼s ∈ {4◦, 8◦, 12◦}) conducted at near and

far depths,

· 2 × 3 combined movements for every combination of the above conditions for

both convergent and divergent movements,

totaling in (2 + 3 + 2 × 3) × 2 = 22 conditions, as in Figures 6.2b and 6.2c. We treated

leftward and rightward saccades as symmetric; therefore, while we randomized stimulus

location to appear on the left or right side, in data processing, we remove the distinction

by taking the absolute value of the saccade amplitudes. Implementation of the conditions

is detailed in Section 6.A.

To account for human sensory and behavioral noise [van Beers, 2007], we repeated

each condition 6 times within one experimental block (totaling in 6 × 22 = 132 trials

per block), and instructed participants to complete a total of 12 blocks. Each block

took 10 − 15 minutes to complete, with a 2 − 3 minute break between blocks. The

experiment was split into sessions across 3 days to avoid fatigue, with each session
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scheduled at approximately the same time for consistent performance. Before each

session, participants also performed a short warm-up session of 24 trials to familiarize

themselveswith the task and target positions and eliminate potential variance in reaction

time. Overall, each experimental condition was repeated a total of 72 times, and the

entire experiment took about 3 hours for each participant, including intermediate breaks.

Running the experiment across 8 participants, we collected a total of 8×72×22 = 12, 672

trials.

Data analysis. Each experimental trial yields a time-series of eye directions recorded

during the trial, sampled at 200 Hz. Similar to Templin et al. [2014]; Yang et al. [2002,

2010], we performed post-hoc processing and analysis on the raw data to more precisely

identify gaze movement offset times. To address tracker noise from high sampling

frequency [van Beers, 2007], we first applied a 25 Hz smoothing filter [Butterworth

et al., 1930], similar to Templin et al. [2014]; Yang et al. [2010].

We compute the angular velocity over time across each trial from the smoothed eye

direction data and apply a constant velocity threshold to detect offset timestamps of

gaze movement. Specifically, for a reliable offset time measurement, we require two

conditions to be met: (1) individual speeds of the left and right eyes to be below a

threshold of 5◦/sec, as well as (2) each eye to be directed within 1◦ relative to the target.

While some prior work suggests that vergence offset times can be detected by the

angular velocity in the vergence dimension, i.e., 𝑑
𝑑𝑡
𝛼v =

𝑑
𝑑𝑡
(𝛼l − 𝛼r) [Yang and Kapoula,

2004], we found that our strategy is more fitting in our use case due to the additional

challenges in eye tracker precision, accuracy, and frequency posed by consumer VR

devices. For consistency and fairness across all conditions, we applied this detection

approach for all the conditions, including vergence-only, saccade-only, and combined
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Figure 6.2: Study setup and results. (a) visualizes the setup and temporal stimuli (zoomed-in for

illustration) of an example condition. (b)/(c) shows the histogram of the collected offset times,

with divergent/convergent movement. Each sub-figure block indicates an individual condition.

Higher vertical/horizontal locations imply higher vergence (Δ𝛼v)/saccade(Δ𝛼s) amplitudes. In

each block, the X-axis denotes the observed offset time (0 − 1200 ms range; 250 ms for each

tick) and Y-axis denotes the corresponding distribution density. The dashed lines indicate the

mean offset time of each histogram. For each histogram an Exponentially modified Gaussian

(ExGauss) distribution is fitted via Maximum Likelihood Estimation (MLE); refer to Section 6.1.1

for details on the fitting procedure.



159

0 4 8 12

saccade amplitude Δ𝛼s(◦)
200

400

600

800
o
ff
se
t
ti
m
e
(m

s)
Δ𝛼v = 0.0◦

(a) saccade

0 4 8 12

Δ𝛼v = −4.2◦

Δ𝛼v = −8.4◦

(b) divergent

0 4 8 12

Δ𝛼v = 4.2◦

Δ𝛼v = 8.4◦

(c) convergent

Figure 6.3: Aggregated mean offset time of studied conditions across all participants. (a) shows the

mean offset time of pure saccade conditions. X- and Y-axes indicate saccade amplitudes, Δ𝛼s,

and mean offset time, respectively (offset time std shown in Figure 6.11). Note the consistency

across varied amplitudes. (b)/(c) show the mean offset times with pure vergence (Δ𝛼s = 0) and

combined movement (Δ𝛼s ≠ 0) conditions. Note the non-monotonic/u-shaped effect of Δ𝛼s on

the offset time.

movement trails. A small percentage of trials (6.4%) were rejected from analysis and

training due to the gaze offset position falling outside the allowable range. Manual

inspection of these trials indicates that the users’ eye movements only satisfied the

second condition (2) above, but not the first (1). These cases could not be identified

during experiment run-time due to the inability to reliably perform post-processing

filters to the raw data on the fly.

Results. Figure 6.2 visualizes the raw data with the identified eye movement offset

time. All time values in the statistical analysis below and throughout the chapter are in

seconds for clarity. Additionally, Figure 6.3 statistically summarizes the mean of each

condition.

The offset times of saccades (Δ𝛼v = 0◦, .37 (mean) ± .12 (std)) are lower than offset

times of vergence movements (Δ𝛼s = 0◦, .59± .15). The effect applies for both divergent

(Δ𝛼v < 0◦, .59± .17) and convergent (Δ𝛼v > 0◦, .59± .14) conditions. The average offset

time of combined movements (.48 ± .16) lies in between. A repeated measures ANOVA
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indicated that the type of eye movement (saccade/vergence/combined) had a significant

effect on the offset time (𝐹2,14 = 339.3, 𝑝 < .001). Additionally, the range (max-min) of

mean offset times across saccade conditions (.02) is significantly narrower than across

vergence conditions (.14). The effect can be visualized by comparing the span of values

on the 𝑦-axis of Figure 6.3.

Larger vergence amplitudes (|Δ𝛼v |) significantly prolong the offset time in combined

movements. For example, the average landing time for |Δ𝛼v | = 4.2◦/8.4◦ is .53± .12/.65±

.16. A repeated measures ANOVA indicated that the |Δ𝛼v | had a statistically significant

effect on the offset time (𝐹2,14 = 384.7, 𝑝 < .001).

For combined offset times, we did not observe a monotonic effect of saccade ampli-

tude (Δ𝛼s). In fact, with a given vergence amplitude, the effect of saccade amplitude

on the combined movement time is inconsistent and commonly non-monotonic, as

visualized with the łU-shapež in Figure 6.3b. The average landing time for pure saccade

conditions, Δ𝛼s = 4◦/8◦/12◦, are .38 ± .12/.36 ± .11/.38 ± .13. When Δ𝛼v = −8.4◦,

however, the fastest combined movement occurs for Δ𝛼s = 8◦ (.49± .16), compared with

the other two conditions Δ𝛼s = 4◦ (.55± .18) and Δ𝛼s = 12◦ (.60± .15). A Mann-Kendall

trend test did not observe a significant monotonic trend (𝜏 = .33, 𝑝 = 1.0).

The distribution of offset times across all conditions exhibits positive skewness

(𝛾1 = 1.94 ± .89). Among the conditions, skewness varied by condition with pure

vergence movements is the smallest (1.4), combined movements in the middle (1.8),

and pure saccadic movements is the highest (3.1). This indicates that different gaze

movements change the shape of the distribution of offset times, which can also be

visualized from the histograms in Figure 6.2.
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Discussion. The visualization and analysis draw us to several conclusions. First, the

offset times of singular saccade movements are significantly shorter and more consistent

than those of vergence movements. Second, statistical analysis of our data evidenced

that slow vergence movements are łacceleratedž if combined with faster saccades. Third,

the acceleration effect varies depending on how they are combined. Saccade acceleration

exhibits a łU-shapež for divergent combined movements (Figure 6.3b). The optimality

(i.e., the amplitude of the saccade that accelerates vergence the most, thus the fastest

combined movement) depends on the corresponding vergence amplitude. Lastly, human

performance on changing 3D visual targets is inconsistent across trials, even within the

same participant. Moreover, the scale of the inconsistency varies across different eye

movements. These observations inspire us to develop a computational model that 1)

depicts quantitatively how saccades accelerate vergence, and 2) predicts the probability

distribution of target landing offset time with combined vergence-saccade movements.

6.1.1 Generalization to Arbitrary Gaze Movements

Statistical model. The statistical analyses in Section 6.1 motivate us to develop a

model for predicting the target landing offset times for arbitrary gaze movements not

present within our dataset. As reported in Section 6.1, the distributions observed in our

dataset are positively skewed, and vary across different conditions; so an Exponentially

modified Gaussian (ExGauss), which features fine control over skewness via its parame-

ters, is a viable choice of statistical model for these distributions [Marmolejo-Ramos

et al., 2023]. Specifically, offset time, T , represented as an ExGauss random variable has
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a probability density function (PDF),

𝑓T (𝑡 ; 𝜇, 𝜎2, 𝜏) =
1

2𝜏
𝑒2𝜇+

𝜎2

𝜏 −2𝑡 erfc

(
𝜇 + 𝜎2

𝜏
− 𝑡

√
2𝜎

)
, (6.4)

parameterized by 𝜇, 𝜎 , and 𝜏 , to depict the location, spread, and asymmetry of the

resulting distribution, respectively. All parameters are in units of seconds. Here, erfc(·)

is the complementary error function. As shown in Figure 6.2, we estimate the ExGauss

parameters for each condition separately via Maximum Likelihood Estimation (MLE) to

collect a total of 𝑁 = 19 sets of parameters (not double counting the saccade conditions).

In this work, offset times are modeled as ExGauss random variables, but note that

modeling with a different random variable may also be valid. We leave the analysis

and comparisons among model choices as future work since the specific presentation is

beyond our focus, and other parameterizations are adaptable to our framework.

Parameter interpolation. Our focus, instead, is on how the parameters of a given

model should be interpolated to provide predictions of gaze offset times for arbitrary

gaze movements. To this end, we leverage the ExGauss parameter estimations of

each condition and smoothly interpolate each parameter via Radial Basis Function

(RBF) interpolation. Concretely, each RBF takes, as input, the amplitude of the gaze

movement, Δ𝜶 = (Δ𝛼v,Δ𝛼s), to output the predicted ExGauss random variable, T (Δ𝜶 ),
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with estimated parameters

𝜇 (Δ𝜶 ) :=
𝑀∑︁
𝑖

𝝀
𝜇
𝑖 𝜑 (𝜀𝜇 | |Δ𝜶 − c

𝜇
𝑖 | |),

�̂� (Δ𝜶 ) :=
𝑀∑︁
𝑖

𝝀𝜎𝑖 𝜑 (𝜀𝜎 | |Δ𝜶 − c𝜎𝑖 | |),

𝜏 (Δ𝜶 ) :=
𝑀∑︁
𝑖

𝝀𝜏𝑖 𝜑 (𝜀𝜏 | |Δ𝜶 − c𝜏𝑖 | |).

(6.5)

c
𝜇
𝑖 and 𝝀

𝜇
𝑖 represent the location and weight of each of the 𝑀 = 4 radial bases, 𝜑 is

the radial function, and 𝜀𝜇 is a tuning shape parameter for the radial function. In our

implementation, we used the Gaussian kernel, 𝜑 (𝑟 ) = exp(−𝑟 2). Overall, the learnable

parameters in this regression are c 𝑗𝑖 , 𝝀
𝑗
𝑖 , and 𝜀

𝑗 for 𝑖 ∈ [1 . . . 𝑀], totalling in 4+ 4+ 1 = 9

variables for each ExGauss parameter 𝑗 ∈ {𝜇, 𝜎, 𝜏}.

Regression. We optimize the adjustable variables via gradient descent to minimize

the mean-squared error between the MLE-estimated ExGauss parameters for each

condition, and the RBF-interpolated parameters, with the loss

𝐿 𝑗 =
1

𝑁

𝑁∑︁ (
𝑗 − 𝑗

)2
for 𝑗 ∈ {𝜇, 𝜎, 𝜏}. (6.6)

The RBF parameters are regressed using batch gradient descent with the loss functions

from Equation (6.6) and a learning rate of 10−2 for 200, 000 iterations. The mean-squared

losses are minimized from 137𝑘/2.3𝑘/17𝑘 s2 to 230/200/120 s2 over the course of each

regression, respectively. We report model performance metrics as well as additional

evaluations in Section 6.2.
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Discussion and applications. We compare the mean offset times predicted by our

model to the means aggregated from our dataset in Figure 6.4. This visualization demon-

strates how the offset times differ between convergent and divergent gaze movements.

For convergent combined movement, we observe the same monotonic decrease in offset

time as a function of saccade amplitude as reported in Figure 6.3c. Additionally, we see

the U-shaped behavior for divergent combined movements, as discussed in Section 6.1

and Fig. 6.3b.

The ExGauss distribution and RBF interpolation methods are represented by pa-

rameterized differentiable functions. This allows us to compose these components

to construct an end-to-end differentiable model for predicting the probability distri-

bution of arbitrary gaze movements. This formulation can be leveraged in various

ways for practical applications. For example, the łoptimalž saccade amplitude, Δ𝛼∗s ,

which minimizes the offset time at various vergence amplitudes, Δ𝛼v can be computed

analytically:

Δ𝛼∗s = argmin
Δ𝛼s

E [T (Δ𝜶 = (Δ𝛼v,Δ𝛼s))]

= argmin
Δ𝛼s

(𝜇 (Δ𝛼v,Δ𝛼s) + 𝜏 (Δ𝛼v,Δ𝛼s)) .
(6.7)

These local minima indicate the location of the lowest point in the valley of the U-shaped

behavior, as visualized in Figure 6.4.

6.2 Model Evaluation

Wefirst measure the statistical accuracy and necessity of the vergence-saccade combined

modeling with an ablation study in Section 6.2.1. We further test the model’s goodness-
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Figure 6.4: Visualization of the interpolated model. The sparsely sampled data visualized in

Figure 6.3 is smoothly interpolated via RBF interpolation. The surface heatmap shows the mean

offset times across all interpolated conditions, and the measured data is overlaid as a scatter

plot for comparison. The łoptimalž combined gaze movements at various vergence amplitude

settings are computed using Equation (6.7) and visualized as a dashed white line on the surface

of the model prediction.

of-fit when generalizing to unseen users and trials in Section 6.2.2. Then, to evaluate its

applicability in real-world scenarios and novel conditions, we perform an evaluation

user study with various scenes in Section 6.2.3.

6.2.1 Model Accuracy and Ablation Study

Metrics. We utilize the KullbackśLeibler divergence (KLdiv) as a continuous domain

metric for measuring the similarity between model-predicted probability densities and

the histograms obtained from the psychophysical data. A model with lower KLdiv

relative to a ground truth histogram indicates a better prediction.

Table 6.2: KL divergence of the model and ablation study.

Condition FULL VER SAC

KL Divergence .172 .236 .444
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Conditions. We conduct an ablation study and utilize the KLdiv to validate the

necessity of modeling combined movements. Specifically, we consider the model’s

prediction accuracy if not supplying it with information on either saccade or vergence

movement. For this purpose, we re-aggregate our psychophysical data into groups

separated only by saccade amplitude (SAC), or only by vergence amplitude (VER)

conditions. That is, we pool together the histograms in Figure 6.2 across the columns,

or rows respectively. The re-aggregation is then utilized to regenerate an ablated model

following the same steps as described in Section 6.1.1. See Figure 6.12 for visualizations

of the ablated model predictions.

While the probability distribution predicted by our model is continuous, the psy-

chophysical study dataset only provides a finite sample of the theoretical ground truth

distribution of offset times. Therefore, we apply the discrete version of KLdiv onto

histograms of the ground truth data for each condition with 𝑛 = 50 bins (Δ𝑡 = 24 ms).

Results and discussion. The resulting average KLdivs for the two ablated models

are compared to the full model (FULL) in Table 6.2. We observe that the FULL model

exhibits significantly lower KLdiv than VER and SAC. While the number of bins does

have an effect on the divergence values, we extensively tested and confirmed that the

relative relationship across the three conditions was not influenced by this factor. These

results demonstrate that combined eye movements exhibit remarkably distinct temporal

patterns that depend both on saccade and vergence movement amplitudes, agreeing

with our observations in Section 6.1. Quantitatively, the combined model predicts

participants’ behaviors significantly more accurately, and thus proves the necessity and

effectiveness of considering amplitudes of both components of movement.
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6.2.2 Model Generalizability

We further evaluate generalized goodness-of-fit with unseen data partitions. We create

segments of the psychophysical data from Section 6.1 into training-testing groups along

multiple axes.

Metrics. Similar to prior art on stochastic visual behaviors [Duinkharjav et al., 2022b;

Le Meur et al., 2017], we utilize the Kolmogorov-Smirnov (K.S.) goodness-of-fit test

[Massey Jr, 1951] between the test set and the corresponding model prediction, using

ten quantiles for the offset time.

Conditions. We first assess the model’s statistical goodness of fit for the full set of

psychophysical data from Section 6.1. Then we analyze the model’s generalizability

based on its capability to successfully fit the statistical distribution with unseen trials

or subjects. To this end, the collected dataset is split into two fully separated training

and testing sets without overlap. The training set is leveraged to re-train a new model

as in Section 6.1.1, which tests the fitness on the corresponding unseen test set. We

experiment with twomethods of partitions: (1) reserve each one of the eight participants’

data as the test set (annotated as C𝑖, 𝑖 ∈ {1, 2, . . . , 8}; (2) uniformly randomly sample

1/8 of the entire data for each condition but across all users (annotated as C𝑟 ). For both

methods, the remaining data is used as the corresponding training set.

Results and discussion. Figure 6.5a shows the results for the goodness-of-fit across

all conditions. Additionally in Figure 6.5b, we provide a quantile-quantile (Q-Q) visual-

ization between the training set and the model prediction on the test set: samples closer

to the diagonal line indicate better distribution agreement. As a baseline reference,

the K.S. test between the model and all collected data shows 𝐷 = .1, 𝑝 = 1. For all
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Figure 6.5: Results of the model generalization evaluation with various partition conditions. (a)

shows the K.S. analysis. The color indicates the corresponding partition condition. (b) shows

the Q-Q plot for all conditions, comparing the distributions between the model-prediction on

test set vs. training set.

experimented partitioning conditions, the K.S. tests exhibit 𝑝 > .99, failing to reject

the null hypothesis that the model prediction acquired from the training set and the

unseen test data are drawn from the same distribution. The goodness-of-fit analyses

above reveal that our probabilistic model can be generalized to unseen users and trials,

implying that it can predict user behavior without observing it in advance.

6.2.3 Study: Predicting and Optimizing Visual Performance.

Beyondmeasuring the performance of the model on data from the controlled experiment

(Section 6.1), we further design and conduct a second study with more complex stimuli.

We aim to gauge the model’s capability to predict and optimize visual performance

with realistic VR/AR scenarios, novel conditions, and unseen participants.

Participants and setup. We recruited 12 participants (ages 20 − 33, 3 female). To

validate the generalizability of the model, we ensured no overlap of participants with the
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study from Section 6.1. All participants reported having normal or correct-to-normal

vision. We utilized the same hardware and łpreamblež checklist as in Section 6.1.

Scenes and stimuli. To validate how our model performs for varied scenarios and

content, we designed 3 distinct environments: (1) a rendered archery range with a 2D

bullseye stimulus (Figure 6.6a), (2) a rendered basketball court with a 3D ball stimulus

(Figure 6.6b), and (3) a photographic natural outdoor scene with a virtual bird stimulus

to simulate pass-through augmented reality (AR) scenarios (Figure 6.6c).

Tasks. We instructed participants to complete a target-changing task similar to Sec-

tion 6.1. During each trial, participants were first instructed to fixate on a cross at the

center of the screen. After successfully fixating for 0.4 s, the cross was immediately re-

placed by one of the three scenes, containing the corresponding target at a new location.

The participant then made an eye movement to direct their gaze at the target stimulus.

To reduce the influence of progressive learning effects on reaction time, as well as to

familiarize the participants with the environment and task, participants performed 36

warm-up trials for each of the scenes, followed by a short break.

Conditions. We aim to validate our realistic scenarios with unseen conditions during

the model training. Given the hardware limitations in Section 6.1, we experimented

with a fixation at 0.4 m and targets placed Δ𝛼v = 6.9◦ away in depth. Using this novel

vergence depth, we designed 3 conditions with various eye travel distances:

Cs: pure vergence motion with the shortest distance, Δ𝛼s = 0◦,

Cm: combined motion with themedium distance Δ𝛼s = 7◦,

Cl: combined motion with the longest distance Δ𝛼s = 10.5◦.
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Figure 6.6: Evaluation user study scenes and results. The first row shows the 3 scenes leveraged

for the study. The target stimuli are zoomed-in with insets. The second row visualizes the

comparisons across various dimensions. (d) compares the model vs. data for the 3 conditions,

aggregating all users and scenes. The X-axis/Y-axis indicates offset time/cumulative probability.

Note the discrepancy between eye travel distance (Cs < Cm < Cl) and landing time (Cm <

Cl < Cs). Predictions for Cs appear higher than measured data, but are statistically similar

(Section 6.2.3). (e) visualizes the model vs. data for each of the participants with a Q-Q plot,

aggregating all conditions and scenes. Samples closer to the diagonal line indicate better fitting.

We used the same conditions across all three tested scenes to statistically compare inter-

scene generalizability, as detailed in the results paragraph below. To acquire enough

data for robust statistical distributions, we included 72 repeats per condition on each

scene, with fully randomized order. Therefore, the experiment generated 12 participants

×3 scenes ×3 conditions ×72 repeats = 7776 trials in total. We avoided participant

fatigue by partitioning the study into 6 blocks, with each block containing trials from

only one scene. Additionally, the scene order was fully counterbalanced with a Latin

square to avoid carry-on effects.
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Results. The second row of Figure 6.6 summarizes the results (see Figure 6.13 for

the full visualization). To measure the model’s applicability and generalizability, we

compare its predictions with the obtained human data along multiple axes, including

unseen conditions (Figure 6.6d), participants (Figure 6.6e), and scenes. Specifically,

1. Across the 3 conditions, Cm exhibits the fastest average offset time (.49 ± .16),

compared to Cs (.58± .13) and Cl (.52± .13) conditions. The trend agrees with the

model’s prediction for Cm/Cs/Cl, as .44 ± .13/.60 ± .15/.54 ± .16. The predictions

forCs in Figure 6.6d appear to be slightly higher than measured data, however, K.S.

tests failed to reject the null hypothesis that the model prediction and the user-

exhibited data are drawn from the same distribution (𝑝 > .99 for each condition).

A repeated measures ANOVA indicated that the condition had a significant effect

on the offset time (𝐹2,22 = 21.75, 𝑝 < .001).

2. Across the 12 participants, K.S. tests failed to reject the null hypothesis that the

model prediction and the user-exhibited data are drawn from the same distribution

(𝑝 > .79 for each).

3. Across the 3 scenes, K.S. tests failed to reject the null hypothesis that the model

prediction and the user-exhibited data are drawn from the same distribution

(𝑝 > .99 for each scene). A repeated measures ANOVA did not observe that the

scene had a significant effect on the offset time (𝐹2,22 = 1.93, 𝑝 = .17). We further

calculated the KLdivs between observed data and model predictions for each

scene to investigate whether the choice of scene affects model alignment. The

KLdiv for archery/basketball/natural is .52 ± .27/.56 ± .29/.54 ± .23, respectively.

A repeated measures ANOVA did not observe that scene had a significant effect

on the KLdiv (𝐹2,22 = .51, 𝑝 = .61).
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Discussion. The statistical analysis demonstrates the model’s consistent capability of

predicting and thus optimizing users’ task performance during 3D visual target changes.

In addition to averaged offset times, the model also accurately predicts probability

distributions with statistical accuracy, considering individual differences and senso-

ry/behavioral randomness. Our predictions are consistent with unseen conditions and

participants, without being affected by novel and realistic scenes. We also re-observe

the remarkable fact that offset time performance is not positively correlated to the travel

distance, again evidenced by a significant łU-shapež effect.

6.3 Application Case Studies

We apply our model to two applications considering 3D gaze movements. First, we

explore how gaze movement variability between VR games can influence video game

difficulty experienced by players. Second, we make recommendations for scene-aware

design and placement of 3D UI elements to minimize the cost of users’ target changing

in scenarios such as automotive head-up displays (HUD).

6.3.1 Gaze Movement Performance in Games for VR vs. 2D

The relationship between human performance in video games and target placement

has been studied in traditional 2D displays [Duinkharjav et al., 2022b; Kim et al., 2022].

In this case study, we consider whether the game-dependent content depth has an

effect on this performance. Since gaming in 2D does not involve vergence movements,

our evidence in Section 6.1 suggests that gaze movements would be faster than in 3D

environments. To measure the scale of this difference across display environments as

well as individual games, we conduct a numerical simulation using our model.
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Setup. We experiment with a large-scale VR player behavior dataset established by

Aizenman et al. [2022]. The dataset investigates how often users fixate at various

depths during gameplay. It contains games which mimic four top-rated games on

Steam1: Job Simulator®, Arizona Sunshine®, Beat Saber®, and Pistol Whip®. With

this data, we can simulate various gaze shifts between fixations ℎf(ixation) that occur

during real gameplay and use our model to predict the corresponding average offset

time. Concretely, the distribution of gaze fixation depth is described via a probability

density function, ℎ 𝑓 (𝛼v | 𝐺). The PDF value at some vergence angle, 𝛼v, represents the

proportion of total time spent fixating at that depth when a user plays a given game 𝐺 .

We model each gaze movement during play as originating and targeting two fixation

points sampled from the same distribution ℎf. Given an origin and target vergence

angles, 𝛼𝑜v and 𝛼
𝑡
v, the joint probability density, ℎm(ovement)(Δ𝛼v), is equal to

ℎm(Δ𝛼v = 𝛼𝑡v − 𝛼𝑜v | 𝐺) = ℎf(𝛼𝑡v | 𝐺) × ℎf(𝛼𝑜v | 𝐺). (6.8)

Using this distribution of vergence movement amplitudes, ℎm, as a weight factor, we

compute the mean gaze movement offset times at all saccade amplitudes our model

supports (i.e., Δ𝛼s ∈ [4◦, 12◦]).

Results and discussion. We visualize our main results in Figure 6.7. Across all gaze

depths reported by Aizenman et al. [2022], 98.7% of the duration was fixated at vergence

angles 𝛼v ≤ 8.4◦ Ð the maximum supported by our model. In analysis, we excluded the

remaining 1.3% data. The baseline 2D condition without vergence movements between

fixations (i.e., Δ𝛼v = 0) exhibits the fastest offset times of 354ms. The mean offset times

for the four games are, on average, 10ms slower compared to the baseline 2D condition.

1https://store.steampowered.com/vr/#p=0&tab=TopSellers

https://store.steampowered.com/vr/#p=0&tab=TopSellers
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Job Simulator® and Arizona Sunshine® present a mean gaze offset time of around 20 ms

more than baseline, while Beat Saber®, and Pistol Whip® present a mean gaze offset

time of around 5 ms.

The additional time and effort resulting from stereoscopic eyemovements in different

games will likely translate to increased difficulty. Notably, the performance regression

varies across games and depends on the scale of players’ gaze depth variance. These

results suggest that gaming in VR comes with a łperformance overheadž when compared

to playing in 2D. Games that feature more salient objects at shallow depths such

as Job Simulator® and Arizona Sunshine® result in up to 20 ms longer gaze offset

times compared to the other two games where very little performance is lost. Further

investigations to characterize the relationship between gaze offset times and player-

experienced difficulties are interesting future work but beyond the scope of this research.

6.3.2 Scene-Aware Optimization for 3D User Interface

The surging automotive head-up displays (HUD) and wearable AR devices raise new

demands in user-centric 3D interface design. Suboptimal designs may slow users’

reactions and cause dangers [Sabelman and Lam, 2015]. When it comes to HUD interface,

a desirable design target is the łoptimalž virtual projection distance that preserves or

even accelerates drivers’ reaction to road conditions (see Figure 6.8a), in addition to

factors such as focal depths. However, the optimization still remains debated and thus

confounds designs. For example, while some literature suggests the distance to be

2.5− 4m [Betancur, 2011], some manufacturers instead designed it as 10m2. Our model

provides a quantitative metric for drivers’ target-reaching time as a consequence of

2https://media.mbusa.com/releases/release-9e110a76b364c518148b9c1ade19bc23-meet-

the-s-class-digital-my-mbux-mercedes-benz-user-experience

https://media.mbusa.com/releases/release-9e110a76b364c518148b9c1ade19bc23-meet-the-s-class-digital-my-mbux-mercedes-benz-user-experience
https://media.mbusa.com/releases/release-9e110a76b364c518148b9c1ade19bc23-meet-the-s-class-digital-my-mbux-mercedes-benz-user-experience
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Mean Gaze Offset Time Surplus (ms)

Pistol Whip®

Beat Saber®

Arizona Sunshine®

Job Simulator®

Figure 6.7: Measuring target-shifting offset times in VR games. Variability in the depth of salient

regions in VR games induces longer gaze movement offset times due to combined vergence-

saccade gaze movements. Representative depth-buffer frames from each image are shown

as insets for each game. Games with higher variation in depth (Job Simulator® and Arizona

Sunshine®) exhibit longer offset times as predicted by our model. Traditional 2D video games

do not involve depth changes during gaze movements, and therefore have a faster average

offset time of 354 ms, shown here as a łbaselinež for comparison.

varying HUD projection distances.

Specifically, as annotated in Figure 6.8b: if the driver were to initiate a gaze move-

ment from looking at the HUD image, depending on the depth of the UI element

as well as the target location, the gaze offset times would vary anywhere between

330 − 450 ms (Figure 6.8c). Therefore, driving assistant applications could leverage the

predictions in gaze offset to adjust the placement of UI elements, or to provide timely

intervention/alerts in case of emergencies. While the specific optimization goal for

object placement will vary depending on the application, we conducted an example

optimization using our model without loss of generality. Specifically, we leverage large-

scale datasets to collect the depth distribution of various scenes and suggest the ideal

placement of a łHUD overlay imagež which would minimize the average gaze offset

time from the display element to arbitrary points of focus within the scene.
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Figure 6.8: Predicted gaze movement offset times with vehicle HUD projected at various depths.

The offset time varies when a driver shifts their gaze from the green HUD virtual dashboard (a)

to different peripheral targets (b), depending on the depth discrepancy between the source and

target depths. (c) If the gaze origin is placed at the same depth as the car interior (𝑑 ≈ 1 m),

gaze movements towards these locations are faster (346 ms at 1 m compared to 359/365 ms

at 7/25 m). In other words, as the depth of the gaze origin moves further (𝑑 ≈ 25 m), the gaze

offset towards the car interior begins to increase. However, for the goal of minimizing the offset

time required to change gaze to the pedestrian on the right, a medium depth of 𝑑 ≈ 7 m is

optimal (342 ms at 7 m compared to 376/343 ms at 1/25 m).
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Figure 6.9 shows our experimental results with two datasets containing depth maps

of natural outdoor environments; DIODE [Vasiljevic et al., 2019] (18, 206 frames), KITTI

[Geiger et al., 2012] (12, 919 frames). The average distances of objects are visualized in

the top row of the histograms. Assuming a starting gaze centered on a HUD overlay

image, positioned at some depth, 𝑑𝐻𝑈𝐷 , we measure the average gaze offset time, E[T ],

for saccade amplitudes uniformly sampled from Δ𝛼s ∈ [4◦, 12◦], and depth targets

sampled from the dataset depth histograms. The resulting relationship between 𝑑𝐻𝑈𝐷

and E[T ] is visualized in Figure 6.9. Due to the differentiable nature of our model, we

can optimize 𝑑𝐻𝑈𝐷 to minimize E[T ] via gradient descent. As a result, the optimal

image placements, 𝑑∗𝐻𝑈𝐷 , are 1.8m and 2.5m for the outdoor DIODE and KITTI datasets.

Beyond HUD in outdoor environments, we may also leverage the model for AR devices

in indoor scenarios. Therefore, we further leveraged the indoor portion from DIODE

(9, 652 frames), and NYUv2 [Silberman et al., 2012] (407, 024 indoor frames). Intuitively,

the depths that minimize E[T ] are smaller for indoor datasets because more objects

are closer in the distance. Indeed, we found 1.3 m to be the optimal projection depths

for both the indoor-DIODE and NYUv2 datasets.

Our model helps design HUD displays in various applications, as the optimized

image placements clearly vary significantly with scenes, e.g. indoor or outdoor ones.

They can also be further optimized by using distributions of saccade amplitudes that

are more representative of each application.

6.4 Limitations

Initial depth and eccentricity. Our combined vergence-saccade model measures

the angular displacement in 3D without considering the initial fixation depth and
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Figure 6.9: Approximating offset times for VR/AR displays in natural scenes. (left): By leveraging

our model and a variety of large-scale datasets, we measure the average gaze movement offset

time (𝑦-axis) originating from a HUD or AR display at various projection distances (𝑥-axis)

towards random locations in a natural 3D environment. We use publicly available datasets

containing depth information in indoor and outdoor scenes. (right): shows the statistical

density (Y-axis) of each dataset’s per-pixel depths (X-axis).

eccentricity, even though both of these factors do influence eye movement offset time.

Specifically, prior literature suggests that convergence/divergence-only movements

show a linear correlation for offset times [Templin et al., 2014], while off-axis movements

that maintain focal depth are much more complex, and require consideration of both

vertical/horizontal eccentricity and ocular-motor anatomics [van Beers, 2007]. In order

to develop a model that predicts gaze offset times between arbitrary points in 3D

space, we would need to individually measure and account for all these factors as a

high-dimensional grid of conditions. Our main focus of this research is to demonstrate

the importance and possibility of modeling gaze offset times for computer graphics

applications; therefore, we plan to investigate all the factors above in future work.

Influence of accommodation and peripheral stereoacuity. Vergence accom-

modation conflict may, in addition to discomfort, also cause incorrect visual fidelity
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[March et al., 2022] and depth acuity [Sun et al., 2020], thus potentially degrading target

localization accuracy. Similarly, the inherent mismatch between the geometric and

empirical horopters may result in poor stereoacuity (and therefore localization) for

targets at farther eccentricities along the iso-vergence circle [Ogle, 1952]. Additionally,

accommodation speeds have been shown to be slower than vergence speeds [Heron

et al., 2001]; hence, while our methods have comprehensive predictive capability in

VR and pass-through AR devices (such as the Oculus Quest, and Apple Vision Pro),

future investigations are necessary to fully model the latency of accommodation in

see-through AR devices. Our stimuli cover a conservative range of vergence depths and

eccentricities, with targets placed close to where the geometric and empirical horopters

meet, and having little to no VAC. While this range is appropriate for the contempo-

rary (vergence-only) VR/AR displays [Aizenman et al., 2022], however, future work

on understanding and optimizing for the influence of accommodation on 3D temporal

visual behaviors may shed light on new performance-aware metrics to guide 3D display

optics design.

Reaction time and image-space features. Throughout this work, we eliminated,

as much as possible, any image-dependent variance in reaction time. Therefore, our

measured offset time is primarily influenced by biomechanical responses to the spatial

distribution of the stimuli, and not influenced by task difficulties or image characteristics

such as contrast and spatial frequency [Devillez et al., 2020; Lisi et al., 2019]. Exploring

the combined effect of cognitive load or image characteristics on reaction time may add

new building blocks for comprehensive measurements of visual performance.

Eye-head coordination. During free-viewing, head movements often accompany

eye movements and we tend to rotate our heads toward visual targets, especially for
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large eccentricities beyond 15◦ [Bahill, 1975]. Our model does not predict the duration

or impact of this concurrent head movement. However, even though moving the head

to center the target is a slower movement that typically completes after initial eye

movement [Sağlam et al., 2011], our retinal image during the re-centering phase is

stabilized, similar to Vestibular Ocular Reflex. Hence, our model’s predictions are likely

to continue to be useful as they identify the earliest point after initial eye movement at

which the target is clearly visible. We hope that future work in eye-head movement

validates this expectation.

6.A Psychophysical Study Conditions

Calibration of maximum vergence amplitudes. The closest depth at which ma-

jority of user study participants could fuse a stereo image in VR was approximately

𝑑min = 0.4 m. Depth, 𝑑 , and vergence angle coordinates, 𝛼v, have an inversely propor-

tional relationship,

𝛼v = arctan
(𝑤IPD

2𝑑

)
, (6.9)

which varies from person to person depending on their IPD, 𝑤IPD. This relationship,

and the fact that there are no negative vergence angle coordinates, effectively limits

the range of vergence gaze movement amplitudes, Δ𝛼v, a user study participant can

make. Crucially, since the IPD, 𝑤IPD, of participants varied, and we couldn’t foresee

the IPDs of all future user study participants, we could not determine the maximum

vergence angle coordinate, 𝛼𝑚𝑎𝑥v , by applying Equation (6.9) naively. Therefore, to

ensure consistency across different participants, we selected the most conservative

value of maximum vergence angle coordinates by minimizing Equation (6.9) under
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Figure 6.10: Study conditions. All visualized conditions originate at a + sign (near for divergent,

far for convergent conditions), and target · signs. Leftward and rightward saccades are treated

as equivalent in data analysis, but there are equal number of leftward and rightward conditions

implemented.

the constraints of 𝑑 > 𝑑min = 0.4 m, and 𝑤IPD > 𝑤min
IPD = 59 mm Ð the minimum IPD

supported by the HMD. Then, applying these edge conditions to Equation (6.9), we get

our maximum vergence angle coordinate of 𝛼max
v = 8.4◦.

Implementation of Study Conditions. We construct three isovergence circles for

each 𝛼 initv + Δ𝛼v, starting with the smallest. As established earlier, this circle must be at

least 𝑑min away from the observer. Therefore we pick the first isovergence circle to be

𝑑 (0) = 𝑑min away, which corresponds to a vergence angle coordinate equal to

𝛼
(0)
v = arctan

(
𝑤IPD

2𝑑 (0)

)
. (6.10)
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The following circles are constructed by adding the Δ𝛼v to 𝛼
(0)
v :

𝛼
(𝑖)
v = 𝛼

(0)
v + Δ𝛼 (𝑖−1)v , for 𝑖 ∈ {1, 2}, (6.11)

where Δ𝛼 (𝑖−1)v is the 𝑖 − 1th condition among vergence conditions.

Equipped with the isovergence circles with angles {𝛼 (𝑖)v } for 𝑖 ∈ {0, 1, 2}, we can

select the initial fixation point for all divergent and convergent gaze motions to be at

coordinates

(𝛼 init, divv , 𝛼 init, divs ) = (𝛼 (0)v , 0◦)

(𝛼 init, convv , 𝛼 init, convs ) = (𝛼 (2)v , 0◦),
(6.12)

respectively. Originating from a given fixation point, the rest of the condition locations

are found as

(𝛼v, 𝛼s) = (𝛼 initv + Δ𝛼v, 𝛼𝑖𝑛𝑖𝑡s + Δ𝛼s), (6.13)

where Δ𝛼v and Δ𝛼s correspond to the specific experimental condition of interest. The

resulting grid of conditions are visualized in Figure 6.10.
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Figure 6.11: Aggregated mean offset time of studied conditions across all participants with error

bars. This is a version of Figure 6.3 with std error bars as a more detailed visualization. See

Figure 6.3 for further details.
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Figure 6.12: Histograms vs. predicted distributions of ablation models. Predicted distributions by

the ablation models are compared to measured data from psychophysical study. Ablation model

SAC was trained using only saccade amplitude information from the study data, while VER

only used vergence amplitude information. Since either model does not have full information

that distinguishes individual conditions within a single column and row respectively, the models

make the same predictions across multiple conditions within this histogram visualization. Thus,

in (a)/(b) the model makes the same prediction within the same columns, while in (c)/(d) the

model makes the same predictions within the same rows.
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Figure 6.13: Responses across all participants, conditions and scenes of Section 6.2.3. Plots visualize

the histogram of gaze offset times (0-1000 ms). Blue/red/green bars represent Cs : Δ𝛼v = 0◦ /

Cm : Δ𝛼v = 7◦ / Cl : Δ𝛼v = 10.5◦. K.S. test results are shown in the 𝐷 , and 𝑝 columns.
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Chapter 7

Conclusion

Understanding the interaction between humans and computer systems has long been a

fundamental aspect of computer graphics. Effectively quantifying human perception

across diverse contexts is essential for addressing these challenges. In this dissertation,

we have demonstrated numerous instances where psychophysical techniques were

applied to model human perception and behavior. By incorporating perceptual and

behavioral models of human color sensitivity, motion estimation mechanisms, decision-

making, and eye control timing, we systematically designed computer systems that align

with human strengths and limitations. Throughout our work, we proposed optimization

strategies such as adjusting the luminance and chromaticity characteristics of visual

content, refining the position and velocity of visual targets, and determining optimal

display system configurations and eye-display alignments. In turn, we have shown that

these strategies can enhance reaction times and accuracy in human performance while

also improving power efficiency and bandwidth utilization in computer systems. We

hope this work serves as a reference for contemporary research in perceptual graphics

and as a foundation for future studies aimed at advancing human-aware system design.
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