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Fig. 1. Predicting stereoscopic eye movement completion time. Our model predicts the completion time of stereoscopic eye movement toward a target in the

visual field. It provides a probability distribution of the duration between the onset of the target and the first moment we can see it in a clear, unfoveated

manner, accounting for both saccadic and vergence changes necessary to do so. (a) When users focus their gaze on a specific 3D target, objects at a different

depth appear doubled (due to incorrect vergence), blurred (due to peripheral vision), or both. (b) A peripheral target might trigger a gaze movement of both

the left and right eyes, which initiates after a reaction time necessary for cognitive processing. (c) First, the conjugate and ballistic saccadic movement lands

the target into foveal vision with high acuity; but we may still see double vision due to the slower, incomplete vergence movement. (d) Once the disconjugate

vergence movement also completes, we can successfully fuse the stereoscopic imagery and see the target clearly.

Speed and consistency of target-shifting play a crucial role in human ability

to perform complex tasks. Shifting our gaze between objects of interest

quickly and consistently requires changes both in depth and direction. Gaze

changes in depth are driven by slow, inconsistent vergence movements which

rotate the eyes in opposite directions, while changes in direction are driven

by ballistic, consistent movements called saccades, which rotate the eyes in

the same direction. In the natural world, most of our eye movements are

a combination of both types. While scientific consensus on the nature of
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saccades exists, vergence and combined movements remain less understood

and agreed upon.

We eschew the lack of scientific consensus in favor of proposing an op-

erationalized computational model which predicts the completion time of

any type of gaze movement during target-shifting in 3D. To this end, we

conduct a psychophysical study in a stereo VR environment to collect more

than 12,000 gaze movement trials, analyze the temporal distribution of the

observed gaze movements, and fit a probabilistic model to the data. We

perform a series of objective measurements and user studies to validate

the model. The results demonstrate its predictive accuracy, generalization,

as well as applications for optimizing visual performance by altering con-

tent placement. Lastly, we leverage the model to measure differences in

human target-changing time relative to the natural world, as well as suggest

scene-aware projection depth. By incorporating the complexities and ran-

domness of human oculomotor control, we hope this research will support

new behavior-aware metrics for VR/AR display design, interface layout, and

gaze-contingent rendering.

CCS Concepts: • Computing methodologies → Perception; Virtual

reality.
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1 INTRODUCTION

Gaze movement patterns are dictated by the strengths and limi-
tations of the visual system. Visual acuity is much higher in the
central region of the retina, encouraging observers to first shift their
gaze to bring targets of interest into the fovea prior to analyzing
any details. Furthermore, the binocular nature of human vision dic-
tates that both left and right eyes must move in coordination to
focus at the same location. Consequently, several distinct classes of
eye movement patterns have evolved in humans to fulfill various
roles and are used in different situations. Due to the underlying
neurological and mechanical limitations of eye movements, each
one exhibits distinct performance characteristics; some are slow and
steady, while others are ballistic and jerky. The combination of all
classes of movements forms an efficient and comprehensive overall
gaze behavior strategy in 3D visual environments.

The speed of these movements are critical in complex tasks such
as driving, where we rapidly move our eyes to acquire a plethora of
information from the surroundings such as the presence of pedes-
trians, the approaching of vehicles, the speedometer reading, and
even GPS navigation instructions. In those tasks, there is always
a delay between the decision to acquire a visual target, and our
two eyes successfully landing on it. We ask “how long is this delay
and how does it depend on the displacement of our gaze location?ž.
With the emerging adoption of virtual/augmented reality (VR/AR),
answering this question enables us to design 3D content that allows
for an efficient target changing.
Prior vision science studies suggest that gaze shifts move along

two primary axes (Figure 2a): one in direction and the other in depth

[Zee et al. 1992]. Highly rapid and consistent eye motions that
quickly shift to a peripheral location, called saccades, are crucial
for fast reaction to targets in different directions. In contrast, eye
movements that shift the gaze in depth by rotating each eye in
opposing directions, called vergence movements, are relatively slower
and more inconsistent. Often, both of these movements are executed
concurrently, and the performance of such combined movements
exhibit a different time signature which is faster than pure vergence
movements, but slower than pure saccades [Bucci et al. 2006; Lang
et al. 2014; Yang and Kapoula 2004; Zee et al. 1992]. While vision
science literature has extensively studied saccadic movements and
provided comprehensive models for its temporal characteristics (i.e.,
the main sequence [Bahill et al. 1975b; van Beers 2008]), the nature
of vergence and combined movements exhibit confounding theories
[Chen et al. 2010; Cullen and Van Horn 2011; King 2011].
As an alternative, we present the first operational model that

predicts the required eye movement completion time necessary for
shifting the gaze to new 3D targets in stereoscopic virtual environ-
ments. We recognize the current lack of first-principle consensus
on how vergence/combined eye movements are neurologically con-
structed. Additionally, we note that noise in both human behavior

and eye-tracking adds difficulty to comprehensive study of complex
stereoscopic movements with downstream applications. Circum-
venting these obstacles, we take a holistic approach to (1) focus
on when both eyes land on a target after its onset, instead of the
intermediate trajectory; and (2) form a computational model which
accounts for the noise and variability to produce a probabilitic pre-
diction, instead of a deterministic one.

We fit our model and validate its accuracy using our psychophys-
ical study data, which includes more than 12, 000 individual trials
to measure the temporal offsets of gaze movements in a stereo VR
environment. The results evidence the model’s consistent prediction
accuracy, generalizability to unseen participants and trials, as well
as the capability of forecasting and optimizing task performance
with various real-world VR scenarios. Our model can be applied to
measure the difficulty of video games in VR and how the scale of
variability in depth can alter gaze movement behaviors for users.
We also explore how completion time predictions can be used as a
metric for evaluating the placement of 3D UI elements in VR/AR
applications. Recalling the driving example, we can improve dri-
ver awareness by placing a virtual car dashboard overlay (with
speedometer readings and navigation instructions etc.) in an adap-
tive manner to minimize completion times of objects that appear in
the driver’s periphery in changing surrounding environments.
This research aims to propose an operational model for com-

puter graphics applications for a behavioral phenomenon that is
yet to be fully understood. We believe that providing a quantitative
understanding of how emerging VR/AR technology influences sta-
tistical signatures of human target-changing performance during
daily tasks is beneficial even without the neurological understand-
ing of the underlying behaviors. We hope the research can serve as
a novel benchmark to guide 3D interfaces and act as a metric for the
“user performancež in various applications and mediums. To this
aim, we will release the source code and de-identified study data at
www.github.com/NYU-ICL/stereo-latency. In summary, our main
contributions include:

• a series of psychophysical studies and data which systematically
characterize visual performance (measured by completion/offset
time) across various vergence-saccade combined eye movements
in VR;

• an operational model that predicts the statistical distribution of
completion times;

• demonstration of the model’s accuracy and effectiveness in pre-
dicting and optimizing VR users’ target-changing performance in
natural scenarios;

• model application to measure users’ visual performance discrep-
ancies among various games, 2D and VR displays, as well as
recommendations for depth designs for 3D user interfaces.

2 RELATED WORK

2.1 Eye Movement, Visual Behaviors, and Performance

Human eyes are highly dynamic, consisting of various types of
movements including smooth pursuit, vestibulo-ocular, saccade,
and vergence movements. Saccade and vergence are the two most
frequent movements to redirect gaze in 3D spaces [Lang et al. 2014].
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Fig. 2. Illustration of various eye movements. (a) We illustrate how we define and measure the angles of eye vergence movements 𝛼v, and saccadic movements

𝛼s throughout the paper. For further intuition, the physical distance of objects appearing at 𝛼s = 0◦ is illustrated in units of meters, and Diopters (i.e., reciprocal

of meters). Here, interpupillary distance (IPD) is chosen to be equal to the human average of 63 mm [Fesharaki et al. 2012]. The optical display depth of the

headset is overlaid as a horizontal black bar at a depth of 0.85 m, or 1.2 D. (b) In vergence motion, the two eyes move symmetrically in opposing directions;

away from each other in divergent movement and towards each other in convergent movement. (c) In saccadic motion, both eyes rotate by the same amount

in the same direction. (d) In combined motion, each eye moves a different amount. The rotation of each eye can be derived as the sum and difference of the

corresponding vergence and saccadic coordinate shift as defined in (a).

There has been extensive study of them in the context of com-
puter graphics, displays, and interactions [Hadnett-Hunter et al.
2019; Yarbus 2013]. Unlike most traditional desktop displays, VR/AR
platforms provide high field-of-view stereoscopic displays, which
simultaneously unlock both saccade and vergence movements. Un-
derstanding the timing of these visual movements is essential in
broad applications such as esports [Duinkharjav et al. 2022], driving
[Salvucci and Liu 2002], and healthcare [Bertram et al. 2016].

Pure saccades are rapid and conjugate eyemovements that change
the direction of gaze along a circle of iso-vergence (or the geometric
horopter) which is computed using the centers of the two eyes and
the fixation point (Figure 2). In the scope of this work, we simplify
the measurements by equalizing the optical and visual axes (cf.
[Konrad et al. 2020; Krajancich et al. 2020]), leaving the study of
this difference as future work. Saccades are high-speed, ballistic
motions with short travel times and a probability distribution of
spatial error skewing towards undershooting the target location
[Lisi et al. 2019]. The scan path, speed, and spatial accuracy of a
saccade are all influenced by the characteristics of the visual content
[Arabadzhiyska et al. 2017; Duinkharjav et al. 2022; Martin et al.
2022; Sitzmann et al. 2018; Specht et al. 2017; van Beers 2007], and
have been extensively studied and modeled [Bahill et al. 1975b;
Boghen et al. 1974; van Beers 2008]. Although those features can
also be influenced by visual tasks [Hu et al. 2021a,b], studies on
the main sequence [Bahill et al. 1975b] show the consistency in
completion time after the ocular-motor-controlled movement starts,
independent of cognitive factors.
By comparison, pure vergences are both slower and disconju-

gate, directing the gaze to a new location in depth and thereby
defining a new geometric horopter. In stereo displays that lack ac-
commodative cues, the displacement of the images presented to
the two eyes provides an essential depth cue that drives vergence
eye movements. In the context of VR/AR, the conflict between the
variable vergence cues provided by stereo displacement and the

static accommodation cue corresponding to the display depth com-
monly causes discomfort, known as vergence-accommodation con-
flict [Julesz 1971]. The duration of pure vergence movements is
influenced by travel distance, direction, and starting depth [Templin
et al. 2014b]. Measurement of vergence movements are also more
challenging compared to saccades due to the relatively smaller am-
plitude of movements [Yang et al. 2002; Yang and Kapoula 2004],
inconsistent performance [Welchman et al. 2008], complex neural
coding [Cullen and Van Horn 2011; King 2011; Semmlow et al. 2019],
and a higher sensitivity to external factors such as pupil dilation
[Feil et al. 2017; Jaschinski 2016; Nyström et al. 2016].

In the real 3D world, saccade and vergence movements are more
commonly combined than isolated because of the 3D distribution of
visual targets [Kothari et al. 2020; Lang et al. 2014]. Prior literature
has demonstrated that, relative to pure vergence, these combined eye
movements are accelerated by the addition of saccades [Collewijn
et al. 1995; Coubard 2013; Erkelens et al. 1989; Pallus et al. 2018; Yang
and Kapoula 2004]. Competing theories attempt to untangle the neu-
rological pathways that control vergence and combined movements,
and fully explain their behaviors [Mays 1984; Quinet et al. 2020;
Zee et al. 1992]. However, there is no definitive and agreed-upon
theory within the literature [Cullen and Van Horn 2011; King 2011],
as exists for saccadic movements [Bahill et al. 1975b]. Therefore,
despite the critical importance of combined eye movements, we still
lack an analytical understanding of how different vergence-saccade
combinations quantitatively influence visual performance. For in-
stance, although adding a small saccade offset to a 3D target location
may accelerate a slower vergence movement, would an extra long
saccade provide even more acceleration, or would the benefits of the
saccade be outweighed by additional travel time? If so, what size sac-
cade is optimal for producing the fastest vergence movement? Our
work attempts to answer these questions by quantifying the scale of
this acceleration effect across different amplitudes of 3D gaze move-
ments into a continuous domain probabilistic model for predicting
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gaze offset times, and side-step the need to explicitly depict the vast
complexity of vergence-saccade movement behaviors.

2.2 Stereo Vision and Stereopsis-Aware Optimization

Understanding stereo vision in order to optimize computer graphics
systems and user experience, especially in VR/AR environments,
remains a popular research frontier [Aizenman et al. 2022; Shi et al.
2022]. Most of today’s consumer VR/AR devices are incapable of
supporting accommodation; therefore, stereopsis is still the primary
means by which these devices improve depth perception over con-
ventional 2D displays.

Numerous efforts have been made to optimize stereoscopic con-
tent with gaze tracking so as to enhance the perceived realism of
depth in virtual environments. Examples include grain positioning
[Templin et al. 2014a], as well as optimizations considering depth
[Kellnhofer et al. 2016a; Templin et al. 2014b], luminance [Wolski
et al. 2022], shading material [Chapiro et al. 2015], and displays
[Chapiro et al. 2014; Zhong et al. 2021]. With the surge of low-cost
and low-power gaze-tracking, another emerging research line in-
corporates dynamic cues such as motion parallax [Kellnhofer et al.
2016b]. Depth cues may be enhanced by incorporating these various
rotation and projection centers [Konrad et al. 2020; Krajancich et al.
2020]. Reduced depth acuity in peripheral vision has also been lever-
aged to accelerate neural rendering [Deng et al. 2022] and image
reconstruction [Kaplanyan et al. 2019].

3 MEASURING AND PREDICTING STEREOSCOPIC EYE
MOVEMENT COMPLETION TIME

To quantitatively understand combined stereoscopic eyemovements,
we first performed a psychophysical experiment with a wide field-
of-view stereo VR display. The study measured how jointly varying
vergence and saccade amplitudes influence the time required for
an observer’s eyes to reach a 3D target relative to stimulus onset;
this duration is often referred to as the eye movement offset time.
The data then serve as the foundation of our model (detailed in Sec-
tion 3.4) for predicting the offset timing of various eye movements.

3.1 Experimental Design

Participants and setup. Eight participants (ages 20-32, 6 male) with
normal or corrected-to-normal vision were recruited. Due to the
demanding requirements, established low-level psychophysical re-
search commonly starts with pilot studies involving a small number
of participants and leverages the collected data to develop compu-
tational models (e.g., the foveated rendering literature [Krajancich
et al. 2021, 2023; Patney et al. 2016; Sun et al. 2020]). These models,
constructed using data from a limited set of subjects, can be eval-
uated for their cross-subject generalizability using a larger group
of users, as we performed in Section 4.3 with 12 additional unseen
participants. Moreover, in the context of our work, psychophysical
studies examining the temporal dynamics of human behaviors re-
quire remarkably large sample sizes for a comprehensive statistical
pattern to account for neural and mechanical noise [Bucci et al.
2006; Collewijn et al. 1995; Erkelens et al. 1989; van Beers 2007;
Yang and Kapoula 2004]. Considering that variations among sub-
jects do not exhibit a significant impact on the completion rate of

low-level gaze movements like saccades [Bahill et al. 1975b] and
vergence movements [Collewijn et al. 1995; Erkelens et al. 1989] ś
as confirmed by our cross-validation analysis in Section 4.2 ś and
given that these are objective psychophysical behaviors not reliant
on subjective reporting, we chose to enlist a small number of partic-
ipants while acquiring an extensive sample size (1,500+ trials) per
participant. To this aim, we split the study across multiple days for
every participant (see Conditions paragraph for details).
The study was conducted with a Varjo Aero head-mounted VR

display (HMD) with the relevant specifications detailed in Supple-
ment A. As shown in Figure 3a, throughout the study, participants
wearing the HMD remained seated and performed the visual-target-
changing task as detailed in the Task and Stimuli paragraph. Before
the experiment, participants underwent a “preamblež checklist to
ensure proper task completion and accuracy, including:

(1) Measure and calibrate the HMD’s inter-pupillary distance (IPD).
(2) Complete a five-point calibration for accurate binocular gaze

tracking (repeat whenever the HMD is re-mounted after breaks).
(3) Adjust a fixation point between the nearest and furthest depths

at which experimental stimuli appeared to ensure the success
of fusing the stereoscopic visual stimuli (i.e., no double-vision).

Task and stimuli. Participants’ task was to shift their gaze to land
on targets appearing in 3D space. At the beginning of each trial,
they were instructed to observe the fixation stimulus at the center
of the screen. As illustrated in Figure 3a, this stimulus included a
combination of a cross and four circular flankers to assist fixation
[Thaler et al. 2013]. Once successful fixation was detected, this
stimulus disappeared and was immediately replaced by a target
stimulus, to which participants were instructed to move their gaze
to as naturally as possible with a single gaze motion. The target
stimulus was a Gaussian blob with 𝜎 = 0.25◦ and peak luminance
of 150 cd/m2 Ð a similar design as in Lisi et al. [2019].
To ensure stable tracking, a trial only began if the participant’s

eyes were within 1.2◦ to the center of the fixation point for a consec-
utive 0.4 s. If the participant failed to hold their gaze at the fixation
point for sufficient duration more than three consecutive times, the
eye-tracker was re-calibrated. Additionally, to ensure correct task
completion, we rejected and repeated a trial if it was completed in
less than 0.1 s or more than 1.3 s. To avoid fatigue, participants were
shown a darkened screen between trials as a cue to blink or close
their eyes, if they: (1) successfully completed a trial, (2) failed to
hold their gaze on the starting fixation point, or (3) failed a trial.

Definitions and annotations. Offset times are known to vary de-
pending on the spatial location of the stimuli, mostly due to the
varying contributions of either saccadic or vergence movements,
often superimposed on each other [Zee et al. 1992]. In order to study
how the spatial placement of the stimuli influences what type of
eye movements arise, we parameterize spatial locations using two
parameters: the vergence angle, 𝛼v, and the saccade angle, 𝛼s, as
illustrated in Figure 2a. All locations in the transverse plane con-
taining the participants’ eyes, and the stimuli can be encoded using
the two degrees of freedom provided by 𝛼v and 𝛼s.

Specifically, following vision science practice, we define the ver-
gence angle as the angle formed by the intersection of the gaze rays.
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Fig. 3. Study setup and results. (a) visualizes the setup and temporal stimuli (zoomed-in for illustration) of an example condition. (b)/(c) shows the histogram

of the collected offset times, with divergent/convergent movement. Each sub-figure block indicates an individual condition. Higher vertical/horizontal locations

imply higher vergence (Δ𝛼v)/saccade(Δ𝛼s) amplitudes. In each block, the X-axis denotes the observed offset time (0 − 1200ms range; 250ms for each tick) and

Y-axis denotes the corresponding distribution density. The dashed lines indicate the mean offset time of each histogram. For each histogram an Exponentially

modified Gaussian (ExGauss) distribution is fitted via Maximum Likelihood Estimation (MLE); refer to Section 3.4 for details on the fitting procedure.

That is, if we denote the signed angles of the left and right eyes, with
respect to the forward “𝑧ž direction (i.e. the intersection between
the transverse and median planes) as 𝛼l and 𝛼r, the vergence angle
is equal to

𝛼v = 𝛼l − 𝛼r . (1)

The set of gaze locations that have the same 𝛼v form an isovergence

circle, visualized as the orange circles in Figure 2a. Pure vergence
movements maintain the direction of gaze and move the gaze point
from one isovergence circle to another.
On the other hand, the saccade angle, 𝛼s, is defined as the mean

of the angles of the left and right eyes:

𝛼s = (𝛼l + 𝛼r)/2. (2)

The set of gaze locations that have the same 𝛼s form a ray represent-
ing the direction of gaze, visualized as the blue lines in Figure 2a.
Pure saccadic movements remain on the same isovergence circle
while rotating the direction of gaze across the transverse plane.

Therefore, a vergence and saccade angle pair,𝜶 = (𝛼v, 𝛼s), unique-
ly defines a point on the transverse plane via the intersection of
the isovergence circle which corresponds to 𝛼v, and the direction of
gaze which corresponds to 𝛼s. An arbitrary gaze movement in this
coordinate system can be represented as a displacement vector,

Δ𝜶 = 𝜶
t − 𝜶

o
= (𝛼 tv − 𝛼ov, 𝛼

t
s − 𝛼os ) = (Δ𝛼v,Δ𝛼s), (3)

for movement from 𝜶
o(rigin)

= (𝛼ov, 𝛼os ) to 𝜶
t(arget)

= (𝛼 tv, 𝛼 ts).

Conditions. We define a condition by a pair {𝜶 o,Δ𝜶 }. We sought
to create a grid of experimental conditions which cover a wide set
of possible gaze movements. Today’s VR devices limit the breadth
of applicable eye movements. Here we discuss these limitations as
well as the solutions we implemented to ensure study accuracy.

First, we observed that participants could not fuse a stereo stim-
ulus when it was placed too close, causing double (yet in-focus)
vision. This restricted the range of possible vergence movements
we could study in VR. We believe this effect is due to the lack of sup-
port for variable accommodation in VR displays, and thus distorted
depth cues due to the vergence-accomodation conflict [Aizenman
et al. 2022; Hoffman et al. 2008; March et al. 2022]. To establish a

conservativeminimum depth with successful stereo stimulus fusion,
we performed a pre-study test with 4 participants with various inter
pupil distances (IPDs) (64 − 71 mm). Through this experiment, we
established that this depth is approximately 𝑑min = 0.4 m in front of
the observer. This corresponds to a maximum vergence angle coor-
dinate of 𝛼max

v = 8.4◦ for an observer with an IPD of𝑤min
IPD

= 59 mm
Ð the lowest IPD supported by the HMD (see Supplement A). Since
a larger IPD only relaxes this maximum value, we limit the maxi-
mum vergence angle to 𝛼max

v ≤ 8.4◦. See Supplement B for a more
in-depth analysis.
Second, we found that the accuracy of the HMD eye tracker

deteriorates significantly further in the periphery for 𝛼s ≥ 15◦.
We recognize that the majority of saccades naturally performed
by humans have amplitudes 𝛼s ≤ 15◦ [Bahill et al. 1975a], due to
a preference to move the head otherwise. Therefore, we limit the
maximum saccade angle to 𝛼max

s ≤ 15◦.
Lastly, due to the inconsistent nature of temporal human behavior,

our study requires many repeats for each condition in order to reveal
statistical trends. It is therefore infeasible to include a large number
of conditions in our study. We address this by only sampling gaze
movement displacements, Δ𝜶 . That is, although the initial gaze
position 𝜶 has been shown to be a relevant factor influencing offset
time [Templin et al. 2014b], we chose not to consider it in our
analysis and modeling for the current study. We leave characterizing
the effects of “starting posež as future work.

To summarize, our study design is constrained to vergence angles
𝛼v ≤ 8.4◦, saccade angles 𝛼s < 15◦, as well as to only consider gaze
movement displacements, Δ𝜶 , and to ignore initial gaze positions,
𝜶
𝑜 . Within these constraints, we sample the following conditions

for vergence, saccade, and combined motions respectively:

• 2 vergence conditions with amplitudes ( |Δ𝛼v | ∈ {4.2◦, 8.4◦})
conducted for both divergent (−) and convergent (+) movements,

• 3 saccade conditions with amplitudes (Δ𝛼s ∈ {4◦, 8◦, 12◦}) con-
ducted at near and far depths,

• 2 × 3 combined movements for every combination of the above
conditions for both convergent and divergent movements,
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totaling in (2+ 3+ 2× 3) × 2 = 22 conditions, as in Figures 3b and 3c.
We treated leftward and rightward saccades as symmetric; therefore,
while we randomized stimulus location to appear on the left or right
side, in data processing, we remove the distinction by taking the
absolute value of the saccade amplitudes. Implementation of the
conditions is detailed in Supplement B.
To account for human sensory and behavioral noise [van Beers

2007], we repeated each condition 6 times within one experimental
block (totaling in 6 × 22 = 132 trials per block), and instructed par-
ticipants to complete a total of 12 blocks. Each block took 10 − 15
minutes to complete, with a 2 − 3 minute break between blocks.
The experiment was split into sessions across 3 days to avoid fa-
tigue, with each session scheduled at approximately the same time
for consistent performance. Before each session, participants also
performed a short warm-up session of 24 trials to familiarize them-
selves with the task and target positions and eliminate potential
variance in reaction time. Overall, each experimental condition was
repeated a total of 72 times, and the entire experiment took about
3 hours for each participant, including intermediate breaks. Run-
ning the experiment across 8 participants, we collected a total of
8 × 72 × 22 = 12, 672 trials.

Data analysis. Each experimental trial yields a time-series of eye
directions recorded during the trial, sampled at 200 Hz. Similar to
[Templin et al. 2014b; Yang et al. 2002, 2010], we performed post-
hoc processing and analysis on the raw data to more precisely
identify gaze movement offset times. To address tracker noise from
high sampling frequency [van Beers 2007], we first applied a 25 Hz
smoothing filter [Butterworth et al. 1930], similar to [Templin et al.
2014b; Yang et al. 2010].
We compute the angular velocity over time across each trial

from the smoothed eye direction data and apply a constant velocity
threshold to detect offset timestamps of gaze movement. Specifically,
for a reliable offset time measurement, we require two conditions
to be met: (1) individual speeds of the left and right eyes to be
below a threshold of 5◦/sec, as well as (2) each eye to be directed
within 1◦ relative to the target. While some prior work suggests
that vergence offset times can be detected by the angular velocity in

the vergence dimension, i.e., 𝑑
𝑑𝑡
𝛼v =

𝑑
𝑑𝑡

(𝛼l −𝛼r) [Yang and Kapoula
2004], we found that our strategy is more fitting in our use case
due to the additional challenges in eye tracker precision, accuracy,
and frequency posed by consumer VR devices. For consistency and
fairness across all conditions, we applied this detection approach
for all the conditions, including vergence-only, saccade-only, and
combined movement trails. A small percentage of trials (6.4%) were
rejected from analysis and training due to the gaze offset position
falling outside the allowable range. Manual inspection of these
trials indicates that the users’ eye movements only satisfied the
second condition (2) above, but not the first (1). These cases could
not be identified during experiment run-time due to the inability to
reliably perform post-processing filters to the raw data on the fly.

3.2 Results

Figure 3 visualizes the raw data with the identified eye movement
offset time. All time values in the statistical analysis below and
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Fig. 4. Aggregated mean offset time of studied conditions across all partici-

pants. (a) shows the mean offset time of pure saccade conditions. X- and

Y-axes indicate saccade amplitudes, Δ𝛼s, and mean offset time, respectively

(offset time std shown in Supplement C). Note the consistency across varied

amplitudes. (b)/(c) show the mean offset times with pure vergence (Δ𝛼s = 0)

and combined movement (Δ𝛼s ≠ 0) conditions. Note the non-monotonic/u-

shaped effect of Δ𝛼s on the offset time.

throughout the paper are in seconds for clarity. Additionally, Figure 4
statistically summarizes the mean of each condition.

The offset times of saccades (Δ𝛼v = 0◦, .37 (mean) ± .12 (std)) are
lower than offset times of vergence movements (Δ𝛼s = 0◦, .59± .15).
The effect applies for both divergent (Δ𝛼v < 0◦, .59 ± .17) and
convergent (Δ𝛼v > 0◦, .59 ± .14) conditions. The average offset
time of combined movements (.48± .16) lies in between. A repeated
measures analysis of variance (ANOVA) indicated that the type of
eye movement (saccade/vergence/combined) had a significant effect
on the offset time (𝐹2,14 = 339.3, 𝑝 < .001). Additionally, the range
(max-min) of mean offset times across saccade conditions (.02) is
significantly narrower than across vergence conditions (.14). The
effect can be visualized by comparing the span of values on the
Y-axis of Figure 4.

Larger vergence amplitudes (|Δ𝛼v |) significantly prolong the off-
set time in combined movements. For example, the average landing
time for |Δ𝛼v | = 4.2◦/8.4◦ is .53± .12/.65± .16. A repeated measures
ANOVA indicated that the |Δ𝛼v | had a statistically significant effect
on the offset time (𝐹2,14 = 384.7, 𝑝 < .001).

For combined offset times, we did not observe a monotonic effect
of saccade amplitude (Δ𝛼s). In fact, with a given vergence amplitude,
the effect of saccade amplitude on the combined movement time is
inconsistent and commonly non-monotonic, as visualized with the
“U-shapež in Figure 4b. The average landing time for pure saccade
conditions, Δ𝛼s = 4◦/8◦/12◦, are .38 ± .12/.36 ± .11/.38 ± .13. When
Δ𝛼v = −8.4◦, however, the fastest combined movement occurs
for Δ𝛼s = 8◦ (.49 ± .16), compared with the other two conditions
Δ𝛼s = 4◦ (.55± .18) and Δ𝛼s = 12◦ (.60± .15). A Mann-Kendall trend
test did not observe a significant monotonic trend (𝜏 = .33, 𝑝 = 1.0).

The distribution of offset times across all conditions exhibits pos-
itive skewness (𝛾1 = 1.94 ± .89). Among the conditions, skewness
varied by condition with pure vergence movements is the smallest
(1.4), combined movements in the middle (1.8), and pure saccadic
movements the highest (3.1). This indicates that different gaze move-
ments change the shape of the distribution of offset times, which
can also be visualized from the histograms in Figure 3.
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3.3 Discussion

The visualization and analysis draw us to several conclusions. First,
the offset times of singular saccade movements are significantly
shorter and more consistent than those of vergence movements.
Second, statistical analysis of our data evidenced that slow vergence
movements are “acceleratedž if combinedwith faster saccades. Third,
the acceleration effect varies depending on how they are combined.
Saccade acceleration exhibits a “U-shapež for divergent combined
movements (Figure 4b). The optimality (i.e., the amplitude of the
saccade that accelerates vergence the most, thus the fastest com-
binedmovement) depends on the corresponding vergence amplitude.
Lastly, human performance on changing 3D visual targets is incon-
sistent across trials, even within the same participant. Moreover, the
scale of the inconsistency varies across different eye movements.
These observations inspire us to develop a computational model
that 1) depicts quantitatively how saccades accelerate vergence, and
2) predicts the probability distribution of target landing offset time
with combined vergence-saccade movements.

3.4 Generalization to Arbitrary Gaze Movements

Statistical model. The statistical analyses in Sections 3.2 and 3.3
motivate us to develop a model for predicting the target landing
offset times for arbitrary gaze movements not present within our
dataset. As reported in Section 3.2, the distributions observed in our
dataset are positively skewed, and vary across different conditions;
so an Exponentially modified Gaussian (ExGauss), which features
fine control over skewness via its parameters, is a viable choice
of statistical model for these distributions [Marmolejo-Ramos et al.
2023]. Specifically, offset time, T , represented as an ExGauss random
variable has a probability density function (PDF),

𝑓T (𝑡 ; 𝜇, 𝜎2, 𝜏) =
1

2𝜏
𝑒2𝜇+

𝜎
2

𝜏
−2𝑡 erfc

(

𝜇 + 𝜎2

𝜏 − 𝑡
√
2𝜎

)

, (4)

parameterized by 𝜇, 𝜎 , and 𝜏 , to depict the location, spread, and
asymmetry of the resulting distribution, respectively. All parameters
are in units of seconds. Here, erfc(·) is the complementary error
function. As shown in Figure 3, we estimate the ExGauss parameters
for each condition separately via Maximum Likelihood Estimation
(MLE) to collect a total of 𝑁 = 19 sets of parameters (not double
counting the saccade conditions).
In this work, offset times are modeled as ExGauss random vari-

ables, but note that modeling with a different random variable may
also be valid. We leave the analysis and comparisons among model
choices as future work since the specific presentation is beyond our
focus, and other parameterizations are adaptable to our framework.

Parameter interpolation. Our focus, instead, is on how the param-
eters of a given model should be interpolated to provide predictions
of gaze offset times for arbitrary gaze movements. To this end, we
leverage the ExGauss parameter estimations of each condition and
smoothly interpolate each parameter via Radial Basis Function (RBF)
interpolation. Concretely, each RBF takes, as input, the amplitude
of the gaze movement, Δ𝜶 = (Δ𝛼v,Δ𝛼s), to output the predicted

ExGauss random variable, T (Δ𝜶 ), with estimated parameters

𝜇 (Δ𝜶 ) :=
𝑀
∑︁

𝑖

𝑤
𝜇
𝑖 𝜑 (𝜀

𝜇 | |Δ𝜶 − c
𝜇
𝑖 | |),

�̂� (Δ𝜶 ) :=
𝑀
∑︁

𝑖

𝑤𝜎
𝑖 𝜑 (𝜀

𝜎 | |Δ𝜶 − c
𝜎
𝑖 | |),

𝜏 (Δ𝜶 ) :=
𝑀
∑︁

𝑖

𝑤𝜏
𝑖 𝜑 (𝜀

𝜏 | |Δ𝜶 − c
𝜏
𝑖 | |).

(5)

c
𝜇
𝑖 and𝑤

𝜇
𝑖 represent the location and weight of each of the𝑀 = 4

radial bases, 𝜑 is the radial function, and 𝜀𝜇 is a tuning shape pa-
rameter for the radial function. In our implementation, we used the
Gaussian kernel, 𝜑 (𝑟 ) = exp(−𝑟2). Overall, the learnable parame-

ters in this regression are c
𝑗
𝑖 ,𝑤

𝑗
𝑖 , and 𝜀

𝑗 for 𝑖 ∈ [1 . . . 𝑀], totalling
in 4 + 4 + 1 = 9 variables for each ExGauss parameter 𝑗 ∈ {𝜇, 𝜎, 𝜏}.

Regression. We optimize the adjustable variables via gradient
descent to minimize the mean-squared error between the MLE-
estimated ExGauss parameters for each condition, and the RBF-
interpolated parameters, with the loss

𝐿𝑗 =
1

𝑁

𝑁
∑︁

(

𝑗 − 𝑗
)2

for 𝑗 ∈ {𝜇, 𝜎, 𝜏}. (6)

The RBF parameters are regressed using batch gradient descent
with the loss functions from Equation (6) and a learning rate of
10−2 for 200, 000 iterations. The mean-squared losses are minimized
from 137𝑘/2.3𝑘/17𝑘 s2 to 230/200/120 s2 over the course of each
regression, respectively. We report model performance metrics as
well as additional evaluations in Section 4.

Discussion and applications. We compare the mean offset times
predicted by our model to the means aggregated from our dataset in
Figure 5. This visualization demonstrates how the offset times differ
between convergent and divergent gaze movements. For convergent
combined movement, we observe the same monotonic decrease
in offset time as a function of saccade amplitude as reported in
Figure 4c. Additionally, we see the U-shaped behavior for divergent
combined movements, as discussed in Section 3.3 and Fig. 4b.

The ExGauss distribution and RBF interpolation methods are rep-
resented by parameterized differentiable functions. This allows us
to compose these components to construct an end-to-end differen-
tiable model for predicting the probability distribution of arbitrary
gaze movements. This formulation can be leveraged in various ways
for practical applications. For example, the “optimalž saccade am-
plitude, Δ𝛼∗s , which minimizes the offset time at various vergence
amplitudes, Δ𝛼v can be computed analytically:

Δ𝛼∗s = argmin
Δ𝛼s

E [T (Δ𝜶 = (Δ𝛼v,Δ𝛼s))]

= argmin
Δ𝛼s

(𝜇 (Δ𝛼v,Δ𝛼s) + 𝜏 (Δ𝛼v,Δ𝛼s)) .
(7)

These local minima indicate the location of the lowest point in the
valley of the U-shaped behavior, as visualized in Figure 5.
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Fig. 5. Visualization of the interpolated model. The sparsely sampled data

visualized in Figure 4 is smoothly interpolated via RBF interpolation. The

surface heatmap shows the mean offset times across all interpolated condi-

tions, and the measured data is overlaid as a scatter plot for comparison.

The łoptimalž combined gaze movements at various vergence amplitude

settings are computed using Equation (7) and visualized as a dashed white

line on the surface of the model prediction.

4 EVALUATION

We first measure the statistical accuracy and necessity of the ver-
gence-saccade combined modeling with an ablation study in Sec-
tion 4.1. We further test the model’s goodness-of-fit when gener-
alizing to unseen users and trials in Section 4.2. Then, to evaluate
its applicability in real-world scenarios and novel conditions, we
perform an evaluation user study with various scenes in Section 4.3.

4.1 Model Accuracy and Ablation Study

Metrics. We utilize the KullbackśLeibler divergence (KLdiv) as
a continuous domain metric for measuring the similarity between
model-predicted probability densities and the histograms obtained
from the psychophysical data. A model with lower KLdiv relative to
a ground truth histogram indicates a better prediction.

Conditions. We conduct an ablation study and utilize the KL-
div to validate the necessity of modeling combined movements.
Specifically, we consider the model’s prediction accuracy if not
supplying it with information on either saccade or vergence move-
ment. For this purpose, we re-aggregate our psychophysical data
into groups separated only by saccade amplitude (SAC), or only by
vergence amplitude (VER) conditions. That is, we pool together the
histograms in Figure 3 across the columns, or rows respectively. The
re-aggregation is then utilized to regenerate an ablated model fol-
lowing the same steps as described in Section 3.4. See Supplement D
for visualizations of the ablated model predictions.

Table 1. KL divergence of the model and ablation study.

Condition FULL VER SAC

KL Divergence .172 .236 .444

While the probability distribution predicted by our model is con-
tinuous, the psychophysical study dataset only provides a finite sam-
ple of the theoretical ground truth distribution of offset times. There-
fore, we apply the discrete version of KLdiv onto histograms of the
ground truth data for each condition with 𝑛 = 50 bins (Δ𝑡 = 24 ms).

Results and discussion. The resulting average KLdivs for the two
ablated models are compared to the full model (FULL) in Table 1.
We observe that the FULL model exhibits significantly lower KLdiv
than VER and SAC. While the number of bins does have an effect on
the divergence values, we extensively tested and confirmed that the
relative relationship across the three conditions was not influenced
by this factor. These results demonstrate that combined eye move-
ments exhibit remarkably distinct temporal patterns that depend
both on saccade and vergence movement amplitudes, agreeing with
our observations in Section 3.3. Quantitatively, the combined model
predicts participants’ behaviors significantly more accurately, and
thus proves the necessity and effectiveness of considering ampli-
tudes of both components of movement.

4.2 Model Generalizability

We further evaluate generalized goodness-of-fit with unseen data
partitions. We create segments of the psychophysical data from
Section 3 into training-testing groups along multiple axes.

Metrics. Similar to prior art on stochastic visual behaviors [Duin-
kharjav et al. 2022; Le Meur et al. 2017], we utilize the Kolmogorov-
Smirnov (K.S.) goodness-of-fit test [Massey Jr 1951] between the
test set and the corresponding model prediction, using ten quantiles
for the offset time. Significance (𝑝 < .05) in the K.S. test indicates a
rejection of the null hypothesis that two samples are drawn from the
same distribution; failing to reject (𝑝 > .05) supports distributional
matching. The 𝐷 value in K.S. measures the maximum distance.

Conditions. We first assess the model’s statistical goodness of
fit for the full set of psychophysical data from Section 3. Then we
analyze the model’s generalizability based on its capability to suc-
cessfully fit the statistical distribution with unseen trials or subjects.
To this end, the collected dataset is split into two fully separated
training and testing sets without overlap. The training set is lever-
aged to re-train a newmodel as in Section 3.4, which tests the fitness
on the corresponding unseen test set. We experiment with twometh-
ods of partitions: (1) reserve each one of the eight participants’ data
as the test set (annotated as C𝑖 , 𝑖 ∈ {1, 2, . . . , 8}; (2) uniformly ran-
domly sample 1/8 of the entire data for each condition but across
all users (annotated as C𝑟 ). For both methods, the remaining data is
used as the corresponding training set.

Results and discussion. Figure 6a shows the results for the good-
ness-of-fit across all conditions. Additionally in Figure 6b, we pro-
vide a quantile-quantile (Q-Q) visualization between the training
set and the model prediction on the test set: samples closer to the
diagonal line indicate better distribution agreement. As a baseline
reference, the K.S. test between the model and all collected data
shows 𝐷 = .1, 𝑝 = 1. For all experimented partitioning conditions,
the K.S. tests exhibit 𝑝 > .99, failing to reject the null hypothesis that
the model prediction acquired from the training set and the unseen
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Fig. 6. Results of the model generalization evaluation with various partition

conditions. (a) shows the K.S. analysis. The color indicates the corresponding

partition condition. (b) shows the Q-Q plot for all conditions, comparing

the distributions between the model-prediction on test set vs. training set.

test data are drawn from the same distribution. The goodness-of-fit
analyses above reveal that our probabilistic model can be general-
ized to unseen users and trials, implying that it can predict user
behavior without observing it in advance.

4.3 Study: Predicting and Optimizing Visual Performance

Beyond measuring the performance of the model on data from the
controlled experiment (Section 3), we further design and conduct
a second study with more complex stimuli. We aim to gauge the
model’s capability to predict and optimize visual performance with
realistic VR/AR scenarios, novel conditions, and unseen participants.

Participants and setup. We recruited 12 participants (ages 20 − 33,
3 female). To validate the generalizability of the model, we ensured
no overlap of participants with the study from Section 3. All partici-
pants reported having normal or correct-to-normal vision. We uti-
lized the same hardware and “preamblež checklist as in Section 3.1.

Scenes and stimuli. To validate how our model performs for varied
scenarios and content, we designed 3 distinct environments: (1) a
rendered archery range with a 2D bullseye stimulus (Figure 7a), (2) a
rendered basketball court with a 3D ball stimulus (Figure 7b), and (3)
a photographic natural outdoor scene with a virtual bird stimulus to
simulate pass-through augmented reality (AR) scenarios (Figure 7c).

Tasks. We instructed participants to complete a target-changing
task similar to Section 3.1. During each trial, participants were first
instructed to fixate on a cross at the center of the screen. After
successfully fixating for 0.4 s, the cross was immediately replaced
by one of the three scenes, containing the corresponding target at a
new location. The participant then made an eye movement to direct
their gaze at the target stimulus. To reduce the influence of progres-
sive learning effects on reaction time, as well as to familiarize the
participants with the environment and task, participants performed
36 warm-up trials for each of the scenes, followed by a short break.

Conditions. We aim to validate our realistic scenarios with unseen
conditions during the model training. Given the hardware limita-
tions in Section 3.1, we experimented with a fixation at 0.4 m and

(a) archery & 2D target (b) basketball & 3D target (c) natural
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Fig. 7. Evaluation user study scenes and results. The first row shows the 3

scenes leveraged for the study. The target stimuli are zoomed-in with insets.

The second row visualizes the comparisons across various dimensions. (d)

compares the model vs. data for the 3 conditions, aggregating all users and

scenes. The X-axis/Y-axis indicates offset time/cumulative probability. Note

the discrepancy between eye travel distance (Cs < Cm < Cl) and landing

time (Cm < Cl < Cs). Predictions for Cs appear higher than measured data,

but are statistically similar (Section 4.3). (e) visualizes the model vs. data

for each of the participants with a Q-Q plot, aggregating all conditions and

scenes. Samples closer to the diagonal line indicate better fitting.

targets placed Δ𝛼v = 6.9◦ away in depth. Using this novel vergence
depth, we designed 3 conditions with various eye travel distances:

Cs: pure vergence motion with the shortest distance, Δ𝛼s = 0◦,
Cm: combined motion with the medium distance Δ𝛼s = 7◦,
Cl: combined motion with the longest distance Δ𝛼s = 10.5◦.

We used the same conditions across all three tested scenes to statis-
tically compare inter-scene generalizability, as detailed in the results
paragraph below. To acquire enough data for robust statistical dis-
tributions, we included 72 repeats per condition on each scene, with
fully randomized order. Therefore, the experiment generated 12
participants ×3 scenes ×3 conditions ×72 repeats = 7776 trials in
total. We avoided participant fatigue by partitioning the study into
6 blocks, with each block containing trials from only one scene.
Additionally, the scene order was fully counterbalanced with a Latin
square to avoid carry-on effects.

Results. The second row of Figure 7 summarizes the results (see
Supplement E for the full visualization). To measure the model’s
applicability and generalizability, we compare its predictions with
the obtained human data along multiple axes, including unseen con-
ditions (Figure 7d), participants (Figure 7e), and scenes. Specifically,

(1) Across the 3 conditions, Cm exhibits the fastest average offset
time (.49 ± .16), compared to Cs (.58 ± .13) and Cl (.52 ± .13)
conditions. The trend agrees with the model’s prediction for
Cm/Cs/Cl, as .44 ± .13/.60 ± .15/.54 ± .16. The predictions for
Cs in Figure 7d appear to be slightly higher than measured data,
however, K.S. tests failed to reject the null hypothesis that the
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model prediction and the user-exhibited data are drawn from
the same distribution (𝑝 > .99 for each condition). A repeated
measures ANOVA indicated that the condition had a significant
effect on the offset time (𝐹2,22 = 21.75, 𝑝 < .001).

(2) Across the 12 participants, K.S. tests failed to reject the null
hypothesis that the model prediction and the user-exhibited
data are drawn from the same distribution (𝑝 > .79 for each).

(3) Across the 3 scenes, K.S. tests failed to reject the null hypothesis
that the model prediction and the user-exhibited data are drawn
from the same distribution (𝑝 > .99 for each scene). A repeated
measures ANOVA did not observe that the scene had a signifi-
cant effect on the offset time (𝐹2,22 = 1.93, 𝑝 = .17). We further
calculated the KLdivs between observed data and model predic-
tions for each scene to investigate whether the choice of scene af-
fects model alignment. The KLdiv for archery/basketball/natural
is .52± .27/.56± .29/.54± .23, respectively. A repeated measures
ANOVA did not observe that scene had a significant effect on
the KLdiv (𝐹2,22 = .51, 𝑝 = .61).

Discussion. The statistical analysis demonstrates the model’s con-
sistent capability of predicting and thus optimizing users’ task per-
formance during 3D visual target changes. In addition to averaged
offset times, the model also accurately predicts probability distribu-
tions with statistical accuracy, considering individual differences
and sensory/behavioral randomness. Our predictions are consistent
with unseen conditions and participants, without being affected by
novel and realistic scenes. We also re-observe the remarkable fact
that offset time performance is not positively correlated to the travel
distance, again evidenced by a significant “U-shapež effect.

5 APPLICATION CASE STUDIES

We apply our model to two applications considering 3D gaze move-
ments. First, we explore how gaze movement variability between VR
games can influence video game difficulty experienced by players.
Second, we make recommendations for scene-aware design and
placement of 3D UI elements to minimize the cost of users’ target
changing in scenarios such as automotive head-up displays (HUD).

5.1 Gaze Movement Performance in Games for VR vs. 2D

The relationship between human performance in video games and
target placement has been studied in traditional 2D displays [Duin-
kharjav et al. 2022; Kim et al. 2022]. In this case study, we consider
whether the game-dependent content depth has an effect on this
performance. Since gaming in 2D does not involve vergence move-
ments, our evidence in Section 3 suggests that gaze movements
would be faster than in 3D environments. To measure the scale of
this difference across display environments as well as individual
games, we conduct a numerical simulation using our model.

Setup. We experiment with a large-scale VR player behavior
dataset established by Aizenman et al. [2022]. The dataset inves-
tigates how often users fixate at various depths during gameplay.
It contains games which mimic four top-rated games on Steam1:
Job Simulator®, Arizona Sunshine®, Beat Saber®, and Pistol Whip®.

1https://store.steampowered.com/vr/#p=0&tab=TopSellers

With this data, we can simulate various gaze shifts between fixa-
tions ℎf(ixation) that occur during real gameplay and use our model
to predict the corresponding average offset time. Concretely, the dis-
tribution of gaze fixation depth is described via a probability density
function, ℎ𝑓 (𝛼v | 𝐺). The PDF value at some vergence angle, 𝛼v,
represents the proportion of total time spent fixating at that depth
when a user plays a given game 𝐺 .

We model each gaze movement during play as originating and
targeting two fixation points sampled from the same distribution
ℎf. Given an origin and target vergence angles, 𝛼𝑜v and 𝛼𝑡v, the joint
probability density, ℎm(ovement) (Δ𝛼v), is equal to

ℎm (Δ𝛼v = 𝛼𝑡v − 𝛼𝑜v | 𝐺) = ℎf (𝛼𝑡v | 𝐺) × ℎf (𝛼𝑜v | 𝐺). (8)

Using this distribution of vergence movement amplitudes, ℎm, as a
weight factor, we compute the mean gaze movement offset times at
all saccade amplitudes our model supports (i.e., Δ𝛼s ∈ [4◦, 12◦]).

Results and discussion. We visualize our main results in Figure 8.
Across all gaze depths reported by Aizenman et al. [2022], 98.7%
of the duration was fixated at vergence angles 𝛼v ≤ 8.4◦ Ð the
maximum supported by our model. In analysis, we excluded the
remaining 1.3% data. The baseline 2D condition without vergence
movements between fixations (i.e., Δ𝛼v = 0) exhibits the fastest
offset times of 354 ms. The mean offset times for the four games are,
on average, 10 ms slower compared to the baseline 2D condition.
Job Simulator® and Arizona Sunshine® present a mean gaze offset
time of around 20 ms more than baseline, while Beat Saber®, and
Pistol Whip® present a mean gaze offset time of around 5 ms.
The additional time and effort resulting from stereoscopic eye

movements in different games will likely translate to increased diffi-
culty. Notably, the performance regression varies across games and
depends on the scale of players’ gaze depth variance. These results
suggest that gaming in VR comes with a “performance overheadž
when compared to playing in 2D. Games that feature more salient
objects at shallow depths such as Job Simulator® and Arizona Sun-

shine® result in up to 20 ms longer gaze offset times compared to
the other two games where very little performance is lost. Further
investigations to characterize the relationship between gaze offset
times and player-experienced difficulties are interesting future work
but beyond the scope of this research.

5.2 Scene-Aware Optimization for 3D User Interface

The surging automotive head-up displays (HUD) and wearable AR
devices raise new demands in user-centric 3D interface design. Sub-
optimal designs may slow users’ reactions and cause dangers [Sabel-
man and Lam 2015]. When it comes to HUD interface, a desirable
design target is the “optimalž virtual projection distance that pre-
serves or even accelerates drivers’ reaction to road conditions (see
Figure 9a), in addition to factors such as focal depths. However, the
optimization still remains debated and thus confounds designs. For
example, while some literature suggests the distance to be 2.5− 4 m
[Betancur 2011], some manufacturers instead designed it as 10 m2.
Ourmodel provides a quantitativemetric for drivers’ target-reaching
time as a consequence of varying HUD projection distances.

2https://media.mbusa.com/releases/release- 9e110a76b364c518148b9c1ade19bc23-
meet-the-s-class-digital-my-mbux-mercedes-benz-user-experience
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Fig. 8. Measuring target-shifting offset times in VR games. Variability in the

depth of salient regions in VR games induces longer gaze movement offset

times due to combined vergence-saccade gaze movements. Representative

depth-buffer frames from each image are shown as insets for each game.

Games with higher variation in depth (Job Simulator® and Arizona Sun-

shine®) exhibit longer offset times as predicted by our model. Traditional

2D video games do not involve depth changes during gaze movements,

and therefore have a faster average offset time of 354 ms, shown here as a

łbaselinež for comparison.

Specifically, as annotated in Figure 9b: if the driver were to initiate
a gaze movement from looking at the HUD image, depending on
the depth of the UI element as well as the target location, the gaze
offset times would vary anywhere between 330− 450 ms (Figure 9c).
Therefore, driving assistant applications could leverage the predic-
tions in gaze offset to adjust the placement of UI elements, or to
provide timely intervention/alerts in case of emergencies. While the
specific optimization goal for object placement will vary depending
on the application, we conducted an example optimization using
our model without loss of generality. Specifically, we leverage large-
scale datasets to collect the depth distribution of various scenes and
suggest the ideal placement of a “HUD overlay imagež which would
minimize the average gaze offset time from the display element to
arbitrary points of focus within the scene.

Figure 10 shows our experimental results with two datasets con-
taining depth maps of natural outdoor environments; DIODE [Vasil-
jevic et al. 2019] (18, 206 frames), KITTI [Geiger et al. 2012] (12, 919
frames). The average distances of objects are visualized in the top
row of the histograms. Assuming a starting gaze centered on a HUD
overlay image, positioned at some depth, 𝑑𝐻𝑈𝐷 , we measure the
average gaze offset time, E[T ], for saccade amplitudes uniformly
sampled from Δ𝛼s ∈ [4◦, 12◦], and depth targets sampled from the
dataset depth histograms. The resulting relationship between 𝑑𝐻𝑈𝐷

and E[T ] is visualized in Figure 10. Due to the differentiable nature
of our model, we can optimize 𝑑𝐻𝑈𝐷 to minimize E[T ] via gradient
descent. As a result, the optimal image placements, 𝑑∗

𝐻𝑈𝐷
, are 1.8 m

and 2.5 m for the outdoor DIODE and KITTI datasets. Beyond HUD
in outdoor environments, we may also leverage the model for AR
devices in indoor scenarios. Therefore, we further leveraged the
indoor portion from DIODE (9, 652 frames), and NYUv2 [Silberman
et al. 2012] (407, 024 indoor frames). Intuitively, the depths that min-
imize E[𝑡] are smaller for indoor datasets because more objects are

closer in the distance. Indeed, we found 1.3 m to be the optimal
projection depths for both the indoor-DIODE and NYUv2 datasets.
Our model helps design HUD displays in various applications,

as the optimized image placements clearly vary significantly with
scenes, e.g. indoor or outdoor ones. They can also be further opti-
mized by using distributions of saccade amplitudes that are more
representative of each application.

6 LIMITATIONS AND FUTURE WORK

Initial depth and eccentricity. Our combined vergence-saccade
model measures the angular displacement in 3Dwithout considering
the initial fixation depth and eccentricity, even though both of these
factors do influence eye movement offset time. Specifically, prior
literature suggests that convergence/divergence-only movements
show a linear correlation for offset times [Templin et al. 2014b],
while off-axis movements that maintain focal depth are much more
complex, and require consideration of both vertical/horizontal ec-
centricity and ocular-motor anatomics [van Beers 2007]. In order to
develop a model that predicts gaze offset times between arbitrary
points in 3D space, we would need to individually measure and ac-
count for all these factors as a high-dimensional grid of conditions.
Our main focus of this research is to demonstrate the importance
and possibility of modeling gaze offset times for computer graphics
applications; therefore, we plan to investigate all the factors above
in future work.

Influence of accommodation and peripheral stereoacuity. Vergence
accommodation conflict may, in addition to discomfort, also cause
incorrect visual fidelity [March et al. 2022] and depth acuity [Sun
et al. 2020], thus potentially degrading target localization accuracy.
Similarly, the inherent mismatch between the geometric and empir-
ical horopters may result in poor stereoacuity (and therefore local-
ization) for targets at farther eccentricities along the iso-vergence
circle [Ogle 1952]. Additionally, accommodation speeds have been
shown to be slower than vergence speeds [Heron et al. 2001]; hence,
while our methods have comprehensive predictive capability in VR
and pass-through AR devices (such as the Oculus Quest, and Apple
Vision Pro), future investigations are necessary to fully model the
latency of accommodation in see-through AR devices. Our stimuli
cover a conservative range of vergence depths and eccentricities,
with targets placed close to where the geometric and empirical
horopters meet, and having little to no VAC. While this range is
appropriate for the contemporary (vergence-only) VR/AR displays
[Aizenman et al. 2022], however, future work on understanding
and optimizing for the influence of accommodation on 3D temporal
visual behaviors may shed light on new performance-aware metrics
to guide 3D display optics design.

Reaction time and image-space features. Throughout this paper,
we eliminated, as much as possible, any image-dependent variance
in reaction time. Therefore, our measured offset time is primarily
influenced by biomechanical responses to the spatial distribution of
the stimuli, and not influenced by task difficulties or image charac-
teristics such as contrast and spatial frequency [Devillez et al. 2020;
Lisi et al. 2019]. Exploring the combined effect of cognitive load or
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Fig. 9. Predicted gaze movement offset times with vehicle HUD projected at various depths. The offset time varies when a driver shifts their gaze from the green

HUD virtual dashboard (a) to different peripheral targets (b), depending on the depth discrepancy between the source and target depths. (c) If the gaze origin

is placed at the same depth as the car interior (𝑑 ≈ 1 m), gaze movements towards these locations are faster (346 ms at 1 m compared to 359/365 ms at

7/25 m). In other words, as the depth of the gaze origin moves further (𝑑 ≈ 25 m), the gaze offset towards the car interior begins to increase. However, for the

goal of minimizing the offset time required to change gaze to the pedestrian on the right, a medium depth of 𝑑 ≈ 7 m is optimal (342 ms at 7 m compared to

376/343 ms at 1/25 m).
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Fig. 10. Approximating offset times for VR/AR displays in natural scenes.

(left): By leveraging our model and a variety of large-scale datasets, we

measure the average gaze movement offset time (Y-axis) originating from a

HUD or AR display at various projection distances (X-axis) towards random

locations in a natural 3D environment. We use publicly available datasets

containing depth information in indoor and outdoor scenes. (right): shows

the statistical density (Y-axis) of each dataset’s per-pixel depths (X-axis).

image characteristics on reaction time may add new building blocks
for comprehensive measurements of visual performance.

Eye-head coordination. During free-viewing, head movements
often accompany eye movements and we tend to rotate our heads
toward visual targets, especially for large eccentricities beyond 15◦

[Bahill et al. 1975a]. Our model does not predict the duration or
impact of this concurrent head movement. However, even though
moving the head to center the target is a slower movement that
typically completes after initial eye movement [Sağlam et al. 2011],
our retinal image during the re-centering phase is stabilized, similar
to Vestibular Ocular Reflex. Hence, our model’s predictions are likely
to continue to be useful as they identify the earliest point after initial
eye movement at which the target is clearly visible. We hope that
future work in eye-head movement validates this expectation.

7 CONCLUSION

We statistically measure and model the correlation between visual
target displacement in 3D and eye movement offset time. Our data
and model reveal a remarkable fact about eye movements in the
3D world: although combining a saccadic movement with a ver-
gence movement accelerates motion towards a target in depth, the
acceleration effect shows a surprisingly non-monotonic U-shape
effect. Moreover, the model accurately predicts absolute temporal
performance on this task without individual normalization. This is
primarily because offset time for eye movements is mainly a bio-
physical phenomenon and not a cognitive one. We hope the research
presented here inspires a new frontier exploring exciting questions
about eye movements in 3D. For example, what contributes to vari-
ation in our target acquisition speeds? How do the surging virtual
layers added to the physical world influence our visual attention
shifts, and thus safety? And finally, how can we build future virtual
environments that boost human performance in taking actions, even
to outperform ourselves in the physical world?
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A DISPLAY SPECIFICATIONS

Table 2. Varjo Aero: relevant specifications.

Resolution Frequency Peak Luminance

2880 × 2720 90 Hz 150 cd/m2

Focal Distance FoV Supported IPD

0.85 m 134◦ (diagonal) 59 − 71 mm

Eye Tracker Frequency Accuracy

200 Hz < 1◦

B PSYCHOPHYSICAL STUDY CONDITIONS

Calibration of maximum vergence amplitudes. The closest depth at

which majority of user study participants could fuse a stereo image

in VR was approximately 𝑑min = 0.4 m. Depth, 𝑑 , and vergence

angle coordinates, 𝛼v, have an inversely proportional relationship,

𝛼v = arctan
(

𝑤IPD

2𝑑

)

, (9)

which varies from person to person depending on their IPD,𝑤IPD.

This relationship, and the fact that there are no negative vergence

angle coordinates, effectively limits the range of vergence gazemove-

ment amplitudes, Δ𝛼v, a user study participant can make. Crucially,

since the IPD,𝑤IPD, of participants varied, and we couldn’t foresee

the IPDs of all future user study participants, we could not determine

the maximum vergence angle coordinate, 𝛼𝑚𝑎𝑥
v , by applying Equa-

tion (9) naively. Therefore, to ensure consistency across different

participants, we selected the most conservative value of maximum

vergence angle coordinates by minimizing Equation (9) under the

constraints of 𝑑 > 𝑑min = 0.4 m, and 𝑤IPD > 𝑤min
IPD

= 59 mm Ð the

minimum IPD supported by the HMD. Then, applying these edge

conditions to Equation (9), we get our maximum vergence angle

coordinate of 𝛼max
v = 8.4◦.

0°

4.2°

8.4°

12°8 °4°0°4°-8 °-12°-

(a) divergent

0°

4.2°

8.4°

12°8 °4°0°4°-8 °-12°-

(b) convergent

Fig. 11. Study conditions. All visualized conditions originate at a + sign (near

for divergent, far for convergent conditions), and target · signs. Leftward

and rightward saccades are treated as equivalent in data analysis, but there

are equal number of leftward and rightward conditions implemented.

Implementation of Study Conditions. We construct three isover-

gence circles for each 𝛼 initv +Δ𝛼v, starting with the smallest. As estab-

lished earlier, this circle must be at least𝑑min away from the observer.

Therefore we pick the first isovergence circle to be𝑑 (0) = 𝑑min away,

which corresponds to a vergence angle coordinate equal to

𝛼
(0)
v = arctan

(

𝑤IPD

2𝑑 (0)

)

. (10)

The following circles are constructed by adding the Δ𝛼v to 𝛼
(0)
v :

𝛼
(𝑖 )
v = 𝛼

(0)
v + Δ𝛼

(𝑖−1)
v , for 𝑖 ∈ {1, 2}, (11)

where Δ𝛼
(𝑖−1)
v is the 𝑖 − 1th condition among vergence conditions.

Equipped with the isovergence circles with angles {𝛼
(𝑖 )
v } for

𝑖 ∈ {0, 1, 2}, we can select the initial fixation point for all divergent

and convergent gaze motions to be at coordinates

(𝛼
init, div
v , 𝛼

init, div
s ) = (𝛼

(0)
v , 0◦)

(𝛼
init, conv
v , 𝛼

init, conv
s ) = (𝛼

(2)
v , 0◦),

(12)

respectively. Originating from a given fixation point, the rest of the

condition locations are found as

(𝛼v, 𝛼s) = (𝛼 initv + Δ𝛼v, 𝛼
𝑖𝑛𝑖𝑡

s + Δ𝛼s), (13)

where Δ𝛼v and Δ𝛼s correspond to the specific experimental condi-

tion of interest. The resulting grid of conditions are visualized in

Figure 11.

C EXPERIMENT RESULTS
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Fig. 12. Aggregated mean offset time of studied conditions across all partici-

pants with error bars. This is a version of Figure 4 with std error bars as a

more detailed visualization. See Figure 4 for further details.
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D ABLATION STUDY HISTOGRAMS
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Fig. 13. Histograms vs. predicted distributions of ablation models. Predicted

distributions by the ablation models are compared to measured data from

psychophysical study. Ablation model SAC was trained using only saccade

amplitude information from the study data, while VER only used vergence

amplitude information. Since either model does not have full information

that distinguishes individual conditions within a single column and row

respectively, the models make the same predictions across multiple condi-

tions within this histogram visualization. Thus, in (a)/(b) the model makes

the same prediction within the same columns, while in (c)/(d) the model

makes the same predictions within the same rows.

E FULL STATISTICAL VISUALIZATION OF USER STUDY

user D p archery basketball natural

𝑈1 0.2 1.0

𝑈2 0.3 .79

𝑈3 0.2 1.0

𝑈4 0.1 1.0

𝑈5 0.2 1.0

𝑈6 0.1 1.0

𝑈7 0.1 1.0

𝑈8 0.2 1.0

𝑈9 0.1 1.0

𝑈10 0.2 1.0

𝑈11 0.2 1.0

𝑈12 0.2 1.0

Fig. 14. Visualization of all participants, conditions and scenes of the user study

Section 4.3. X-axis indicates time (0-1000ms). Y-axis indicates density. Each

color of the stacked bars indicates each condition: blue/red/green represents

Cs : Δ𝛼v = 0◦ / Cm : Δ𝛼v = 7◦ / Cl : Δ𝛼v = 10.5◦. The inset numbers are the

corresponding K.S. test results for each user across all conditions and scenes.

Note that the discrepancy between eye travel distance (Cs < Cm < Cl)

and landing times (Cm < Cl < Cs) share statistical significance across

individuals.
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