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Fig. 1. Predicting and reducing human mis-estimation of object motion. (a) shows a common animation and gaming scenario where the observer has to estimate

the motion of a soccer ball in a 3D scene. Due to perceptual errors in estimating motion vectors in screen-displayed graphics, we may significantly misestimate

the direction of the soccer ball (estimated leftward yellow vector vs. actual rightward green vector). For an animated example, see the supplementary video. To

mitigate motion estimation inaccuracies and enhance task performance and perceptual fidelity, our perceptual model measures the correlation between

estimation error, and scene dynamics and content. These predicted measures lead to content designs optimized for minimizing perceptual errors in motion

estimation, such as by adjusting scene depth with an added wall (b) or by altering camera angles (c).

Precisely understanding how objects move in 3D is essential for broad

scenarios such as video editing, gaming, driving, and athletics. With screen-

displayed computer graphics content, users only perceive limited cues to

judge the object motion from the on-screen optical flow. Conventionally,

visual perception is studied with stationary settings and singular objects.

However, in practical applications, weÐthe observerÐalso move within

complex scenes. Therefore, we must extract object motion from a combined

optical flow displayed on screen, which can often lead to mis-estimations

due to perceptual ambiguities.

We measure and model observers’ perceptual accuracy of object motions

in dynamic 3D environments, a universal but under-investigated scenario in

computer graphics applications. We design and employ a crowdsourcing-

based psychophysical study, quantifying the relationships among patterns of

scene dynamics and content, and the resulting perceptual judgments of object

motion direction. The acquired psychophysical data underpins a model for

generalized conditions. We then demonstrate the model’s guidance ability to

significantly enhance users’ understanding of task object motion in gaming

and animation design. With applications in measuring and compensating for
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object motion errors in video and rendering, we hope the research establishes

a new frontier for understanding and mitigating perceptual errors caused

by the gap between screen-displayed graphics and the physical world.
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1 INTRODUCTION

When driving on the road, we must accurately estimate and respond

to themotion of various objects in a dynamic environment, including

other vehicles and pedestrians. How users perceive object motion

is also a universal metric in computer graphics applications, such

as guiding camera trajectories in video playback [Kang and Cho

2019], controlling game difficulties [Caroux et al. 2013], compressing

videos [Furht et al. 2012], and reducing simulator sickness [Hu et al.

2019; Park et al. 2022]. In these real-world scenarios, both the objects

and we ourselves may move within dynamic 3D environments. In

such situations, extracting scene-relative object motion solely from

the mixed and anisotropic optical flow on the screen can lead to
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misinterpretations due to its ambiguous nature [Dokka et al. 2019].

Therefore, we ask, “How accurately can we perceive moving objects

in scenes featuring different motion dynamics?ž.

Prior studies have observed that perceptual errors can occur

when estimating object movements during self-movements [Dokka

et al. 2019; Xing and Saunders 2022] and in 3D scenes [Cornilleau-

Pérès and Gielen 1996; Van den Berg and Brenner 1994a]. These

errors are attributed to how humans exhibit inherent cognitive

biases that mislead our motion estimates when crucial perceptual

cues are absent (e.g., vestibular cues obtained from whole-body

movement) [Xie et al. 2020]. However, to provide design guidance

in downstream graphics applications, a quantified understanding of

the variability of these errors across different scene dynamics is still

missing. Filling this knowledge gap poses a remarkable challenge

due to the need of sampling a diverse range of conditions, conducting

repeated experiments, and involving a wide population to account

for variations in individuals’ sensory and perceptual variances [Xing

and Saunders 2022].

In this paper, we measure and analyze the errors in our visual

perception of screen-displayed object motion, particularly in rela-

tion to concurrent global scene movements which result in dynamic

environments. To this aim, we present a series of large-scale psy-

chophysical studies comprising over 10,000 trials, which correlate

object motion perception and scene dynamics characterized by scene

movements and content depths. We employ and validate a crowd-

sourcing approach to tackle the unique challenges posed by the

need for large sample sizes in both population and trial repetitions.

Additionally, we also showcase how the model can guide ani-

mation and game design to reduce perceived errors in object mo-

tion by viewers. We hope the research will contribute to a new

frontier in the computer graphics community, focusing on under-

standing the visual performance limitations introduced by displays

and exploring design strategies to compensate for them. Refer to

www.github.com/NYU-ICL/motion-estimation for the anonymized

data and model implementations.

Limitation overview. We present this research to raise awareness

of how designs of scene content and dynamics can affect human

perceptual accuracy of motion in common computer graphics con-

texts. However, we do not propose automated algorithms that would

directly apply these discoveries to optimize user performance.

2 RELATED WORK & TERMINOLOGY

2.1 Image-Space Motion Description and Estimation

Optical flow is often used to depict the spatio-temporal motion of

video [Huang et al. 1995; Neumann 1984]. It can be estimated by

forward analysis [Beauchemin and Barron 1995; Xu et al. 2011] or

learning-based approaches [Hu et al. 2018; Hui et al. 2018]. Typically,

global scene motions caused by camera movements induce global

optical flows, while isolated object motions result in more localized

patterns. Therefore, optical flows are instrumental for detecting

object motion in images and 3D space [Talukder and Matthies 2004].

As visualized in Figure 2a, optical flow patterns of rigid transla-

tional movements exhibit a stationary on-screen point, known as

the Focus of Expansion (FOE), from which flow vectors diverge [Jain

1983]. The locations of these FOEs serve as visual cues that humans

use to infer the direction of object and scene motions [Jain 1984;

Warren Jr and Hannon 1988]. Thus, prior works have examined the

relationship between the dynamics of the FOE, which capture the

observer-relative scene motions in 3D space, and human perception

of motion [Jain 1984; Lappe et al. 1999; Warren Jr and Hannon 1988].

2.2 Human Perception of Scene and Object Motion

In most computer graphics scenarios, users often have to remain

physically stationary. To create the sensation of dynamics such as

self- (a.k.a., vection [Howard and Howard 1994; Hu et al. 2019])

or scene content movements, we typically synthesize illusions of

motion via graphics rendering, resulting in a complex and rich visual

percept [Lappe et al. 1999; Nishida et al. 2018]. Examples include

playing a racing car video game or watching a roller coaster video.

Therefore, when observing moving objects on a computer screen,

our primary source of motion cues is the displayed optical flow.

Unlike physical scenarios, such on-screen visual stimuli often

lack crucial information that assists us in accurately estimating 3D

motion, including vestibular cues [DeAngelis and Angelaki 2012]

as well as depth cues via stereopsis [Didyk et al. 2011] and accom-

modation [Murray 1994]. Specifically, Xie et al. [2020] demonstrate

that the accuracy of human motion perception relies on the combi-

nation of multiple cues, indicating that we are most adept at motion

estimation in real-life. Consequently, recent studies observed hu-

man errors in extracting object motion from its surrounding 3D

environment under dynamic camera movements [Dokka et al. 2019;

Layton and Fajen 2016; Li et al. 2018; Xie et al. 2020; Xing and Saun-

ders 2022]. Several hypotheses have been presented to explain the

underlying neurological mechanism for cognitively decomposing

the two motions [Beck et al. 2011; Kim et al. 2022; Sasaki et al. 2017].

Although existing research has identified some of the neurological

mechanisms, we aim to address the knowledge gap in quantifying

the accuracy and precision of human imperfections in extracting

object motion. Additionally, we provide functional guidance for

content design in downstream graphics applications to enhance

task performance. To achieve this, we benchmark and model human

object motion estimation based on the movement velocities of the

scene and target object, and the depth disparity between them.

2.3 Visual-Acuity-Aware Computer Graphics

Human visual acuity is imperfect, and is affected by various sources

of environmental, cognitive, and physiological noise [Deering 1998;

Van Beers 2007]. Examples of limitations include reduced resolution

in peripheral vision [Watson 2014], diminished color perception [Co-

hen et al. 2020], and flicker imperception [Tyler 1987]. Researchers

have capitalized on these limitations to optimize applications for

fast [Kaplanyan et al. 2019; Krajancich et al. 2021], power-efficient

[Duinkharjav et al. 2022], and higher-quality [Montalto et al. 2015;

Park et al. 2023] imagery, as well as automatically generated visual

illusions [Freeman et al. 1991]. Additionally, these perceptual limita-

tions have been exploited to enable optimized shading rates [Denes

et al. 2020; Jindal et al. 2021]. However, while most existing methods

focus on enhancing system performance within acceptable percep-

tual thresholds, our work aims to compensate for these perceptual

errors to ensure safer and more accurate user task performance.

ACM Trans. Graph., Vol. 43, No. 6, Article 277. Publication date: December 2024.
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Fig. 2. Illustration and analysis of biased perception during self-motion. (a) Accurate reconstruction of the scene-relative target motion ®𝑤𝑡 , requires observers to

subtract their percept of scene motion ®𝑣𝑠 , from the observed on-screen target motion ®𝑣𝑡 . The divergence point of optical flow fields due to scene and target

motions, a.k.a., FOE, denoted as circles at the horizon. (b) Unbiased łperfectž observers can perfectly estimate the scene heading, 𝜑𝑠 , to determine the direction

of scene-relative target motion. Observer L(eft)/R(right) responses are annotated inside the FOE circle for each target motion condition. Biased human

observers make judgment errors due to mis-estimation of the scene heading, 𝜑 ′
𝑠
≤ 𝜑𝑠 . Biased estimations denoted as dashed arrows. (c) The psychometric

curve visualizes the probability of observers L/R responses for various target motion conditions. The curve indicates that when the target moves through the

scene at a speed of 0.15 m/s to the right (equivalent to an observed target heading of 𝜑𝑡 = 6.2◦) observers believe the object to not be moving sideways, on

average. Data used for curve fitting is shown as a scatter plot (with SEM error bars).

3 STUDYING OBJECT MOTION PERCEPTION

In a dynamic scenario, a target object moves in the scene ( ®𝑤𝑡 ),

which simultaneously appears to be moving to the observer who

is also in motion (®𝑣𝑠 ), as visualized in Figure 2a. Figure 2b (top)

illustrates that an unbiased “perfectž observer can accurately un-

derstand ®𝑤𝑡 and ®𝑣𝑠 by analyzing their vector combination, ®𝑣𝑡 , as

it appears on-screen. Refer to Figure 3 for a reference to all target

and scene motion-related symbols used throughout the manuscript.

However, this ideal scenario may not reflect reality. As depicted in

Figure 2b (bottom), we are imperfect in estimating either motion

due to the decomposition ambiguity [Xie et al. 2020; Xing and Saun-

ders 2022]. First, depending on scene dynamics, our perception of

scene and target heading often exhibits a “central biasž, meaning an

under-estimation [Xie et al. 2020; Xing and Saunders 2022]. Second,

when observers lack visual cues to determine the target distance,

the ambiguous optical flow further exacerbates the mis-estimation

[Van den Berg and Brenner 1994a]. For example, in Figure 2a, it is

ambiguous whether the ball is large and moving at a farther depth

or small and moving at a closer depth. Therefore, we study (Sec-

tion 3.1), quantify, and model (Section 3.2) the perceptual bias scale

of target motions under various scene dynamics and content.

3.1 Psychophysical Study

Participants. We recruited subjects for the study through the

crowdsourcing platform Prolific. A strict screening protocol was

enforced to mitigate potential confounds arising from task misin-

terpretation and attention lapses, ensuring high-quality data (see

Filtering). As such, we consider the data from 𝑛 = 38 subjects (ages

20 − 56, 21 male) screened from an initial pool of 78. All study pro-

tocols were approved by an institutional review board (IRB), and

Prime symbol denotes perceived quantitySymbol denotes type of quantity

3D
Velocity

Camera-Space
(On-screen)

World-Space
(Screen-relative)

Heading
Angle

Subscript denotes subject of quantity

(ground truth without)

(“t” for target, “s” for scene)

Estimated Camera-Space Velocity
of the Target Object

Fig. 3. Motion-related variable notation used throughout Sections 3 and 5

and Figs. 2 and 8.

subjects were compensated at a rate of $15/ℎ. Refer to the supple-

mentary video for animated visualizations of all study procedures.

Stimuli and procedure. The study was conducted via a web-based

application on a computer screen. A screen calibration procedure

ensured that all subjects viewed the stimuli at approximately 50◦

Field of View (FOV). After calibration, they received a text-based

introduction to the stimuli and task.

Subjects initiated each trial by pressing a button. As shown in

Figure 4a, they were presented a fixation cross at the screen center

for .5 s at the beginning of each trial and instructed to maintain their

gaze stationary. After the cross disappeared, a 2 s video (recorded at

60 fps) was shown. Initially, a flat ground surface with Perlin noise

texture is visible, conveying forward scene motion with variable

speed, 𝑣𝑠 , and heading direction,𝜑𝑠 , to an observer at variable height

ℎ𝑠 . The ground texture was chosen to avoid tuning to specific spatial

frequency ranges, and instead incorporate a broad spectrum of

frequencies, similar to [Xing and Saunders 2022]. After 1 s, a yellow

probe (target object) was introduced at a height, ℎ𝑡 , positioned 6 m

ACM Trans. Graph., Vol. 43, No. 6, Article 277. Publication date: December 2024.
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Fig. 4. Study protocols. (a) In the psychophysical study, a fixation cross is displayed for .5 s at the beginning of each trial. Subsequently, a video plays depicting

a scene moving towards the observer at a non-zero heading angle (arrow in (b)). After 1 s, a moving yellow probe (green arrow) is added to the screen. Once

the 2 s video finishes, the subject is asked whether the probe was moving left or right. The probe does not have a forward velocity (top of (b)). (c) In the

application study, the protocol is near-identical, with three differences. The target object is added at the start of the trial, it has forward velocity (bottom of

(b)), and the subject is asked to choose one of seven options to indicate the direction of the object’s motion.

in front of the observer at 5◦ eccentricity below fixation (ℎ𝑠 − ℎ𝑡 =

.52 m). The target object then moved either left or right relative to

the scene at various speeds, 𝑤𝑡 , for the rest of the clip (1 s). The

object remained visible throughout all trials.

At the end of the video, subjects were prompted to indicate, via

button press, whether the probe was moving left or right relative

to the scene. If they didn’t respond after 10 s, the trial expired and

prompted a screening trial before retrying. No feedbackwas provided

during trials to prevent learning effects.

Prior to the study, subjects participated in an interactive training

session to familiarize themselves with the task and interfaces. The

session comprised eight unique trials of the same protocol. During

training, subjects were provided with feedback on their performance

after each trial and shown a top-down visualization (see Figure 4b).

Subjects were required to respond correctly to all training trials

before being allowed to progress. Training conditions were selected

to prevent external bias (see Conditions).

Metrics. The procedural goal of the study was to determine the

threshold heading of the target object, 𝜇, at which subjects perceive

the target’s scene-relative velocity to be zero: ®𝑤 ′
𝑡 = 0 (a.k.a., bias and

inaccuracy). During each trial, the subject is presented with targets

of different velocities, ®𝑤𝑡 , which appear on-screen to be moving

along

®𝑣𝑡 = ®𝑤𝑡 + ®𝑣𝑠 , (1)

as illustrated in Figure 2a. By aggregating subject responses for

different target velocities, ®𝑤𝑡 , each corresponding to a different

target heading direction, 𝜑𝑡 (see Figure 2b), we fit a psychometric

curve, 𝑓 (see Figure 2c). This allows us to determine the threshold

target heading, 𝜑𝑡 = 𝜇, at which observers perceive that the target

is neither moving left nor right [Wichmann and Hill 2001]:

𝑓 (𝜑𝑡 ; 𝜇, 𝜎, 𝜆) = 𝜆 + (1 − 2𝜆) × 0.5
[

1 + erf
(

(𝜑𝑡 − 𝜇) /
√︁

2𝜎2
)]

. (2)

Here, 𝜎 denotes the slope, and indicates how consistent (or precise)

an observer’s bias measurement is trial-to-trial, 𝜑𝑡 , and 𝜆 denotes

the guess/lapse-rate of subjects (i.e., how often subjects make errors

irrespective of their observed stimulus). To determine the threshold,

𝜇, and slope, 𝜎 , of this psychometric curve, in our study we sampled

11 target heading, 𝜑𝑡 , stimulus levels uniformly sampled between

[−𝜑𝑠 , +3𝜑𝑠 ].

Conditions. Beyond determining the psychometric parameters of

a single condition, we aim to investigate how these parameters vary

with scene motion, and depth. To this aim, we anchor our measure-

ments to a reference condition, where {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, ℎ𝑠 =

1.75 m}, and explore test conditions where only one attribute of the

reference changes. These test conditions vary in scene dynamics

in speed, 𝑣𝑠 ∈ {0.5 m/s, 3 m/s} and heading, 𝜑𝑠 ∈ {5◦, 25◦}, as well

as scene content in height, ℎ𝑠 ∈ {.55 m, .74 m, 5.22 m}, resulting

in a total of 8 study conditions. Note that we vary the observer

height ℎ𝑠 to examine the corresponding scene’s depth disparity to

the target. To provide a more intuitive representation of depth dis-

parity, we henceforth express these conditions via a dimensionless

target-scene depth disparity coefficient: 𝑑 = ℎ𝑡/ℎ𝑠 ∈ {.05, .3, .9} for

each scene height condition, and 𝑑 = .7 for the reference.

Lastly, in the training session, to avoid introducing external bias

to subjects’ judgment, the trials were deliberately designed as (1) sig-

nificantly different from trials in the study, and (2) sufficiently easy

for classification, yet difficult enough to mitigate potential misinter-

pretation of the task. So, we selected four trials with 𝜑𝑠 = 40◦, and

𝜑𝑡 ∈ {±30◦,±40◦}. The trial with 𝜑𝑠 = 40◦ and 𝜑𝑡 = 30◦ satisfied

the requirement (2) above and thus was reused as a screening trial to

identify subjects who misinterpreted the task even after the training.

ACM Trans. Graph., Vol. 43, No. 6, Article 277. Publication date: December 2024.
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Fig. 5. Psychophysical Study Results. Psychometric curves along (a) scene speed, (b) scene heading, and (c) target-scene depth ratio are fitted from the study

data, and interpolated via polynomial regression. Yellow colors indicate majority left responses in the left/right study protocol described in Section 3.1. Each

curve’s threshold is denoted as a scatter with error-bars indicating the Just Noticeable Difference (JND) offset, or stimulus levels at 25/75% response probability.

Contour lines represent JND step-sizes. łPerfectž unbiased observer’s thresholds, as depicted in Figure 2b, are visualized as comparison via dotted black lines.

Refer to supplementary video for user study conditions which correspond to various points across the heatmaps.

The screening trial was repeated 24 times throughout the study, Each

trial was mirrored to ensure left/right balance, resulting in a total of

(11 × 8 + 24) × 2 = 224 main trials (median completion in 21 min).

Filtering. To ensure high-quality data from crowd subjects, we em-

ployed a two-layer statistical screening. First, we screened inatten-

tive subjects who only made random guesses. An informal pre-pilot

study suggested that subjects almost always gave correct responses

when 𝜑𝑡 = 3𝜑𝑠 as these were easy-to-answer trials. We leveraged

this observation and required an accuracy of ≥ 90%, or a guess rate

of 𝜆 < 10%, to pass this screen (random guess accuracy is 50%).

Second, we screened for subjects who misinterpreted the task and

indicated object motion directions relative to the observer. To this

end, we required an accuracy of ≥ 50% on screening trials (where

observer-relative accuracy is 0%). Refer to Supplement A for study

results reported without screening trial-based filtering.

Results. From the initial 78 subjects, we removed 4 (5%) from the

attentiveness screen and 36 (46%) from task understanding screen,

within a normal range for such crowdsourcing studies [Brühlmann

et al. 2020]. In total, 6, 688 trial results were used for further anal-

ysis. Prior to combining the left and right heading conditions, we

conducted a one-way Analysis of Variance (ANOVA) which showed

that the direction of heading did not have a significant effect on the

subject-aggregated responses (𝐹1,174 = .1, 𝑝 = .75).

As described in Metrics, we statistically summarized study re-

sponses by fitting psychometric curves, extracting the low-dimen-

sional parameters of the threshold, 𝜇, and slope,𝜎 , for each condition

separately (with a fixed 𝜆 = 1.6% across all conditions found via the

attentiveness screen guess rate). Curve parameters for each series

of conditions that varied along a single attribute were interpolated

via polynomial regression (quadratic for 𝜇, and linear for 𝜎). The

results are visualized in Figure 5. See Supplement B for individual

curve parameters and polynomial term coefficients.

Discussion. The statistical analysis demonstrates that we can

safely aggregate heading directions in a left-right agnostic manner.

The central bias persists across all studied conditions, as evidenced

by the measured thresholds below the “unbiased judgmentž line in

Figure 5. This suggests that objects moving to the right at a heading

angle between the 50% threshold and the unbiased judgment line

will be perceived as moving to the left by most observers.

We observe other notable trends from the visualization. From

Figure 5a, we observe a steady increase in both bias and consistency.

That is, at higher scene speeds, judgments across subjects become

more consistent, yet inaccurate. From Figure 5b, the threshold

for the scene heading model intersects at zero degrees, indicating

that for forward headings, our perception of lateral motion direc-

tions becomes accurate due to the lack of asymmetric optical flow

cues. Comparing the unbiased judgment line with the threshold fit

suggests that the scale of motion estimation bias is roughly propor-

tional to the scene heading, 𝜑𝑠 . From Figure 5c, our perceptual

errors increase with the depth disparity between the target and the

surrounding scene (i.e., ↑ 𝑑). Intuitively, this reveals that if the scene

content is too far (e.g.,, the sky), it no longer appears to move nor

offer cues to target motion. Conversely, if the scene overlaps with

the target (i.e., 𝑑 → 0), we still observe a significant bias.

Our 2D-monitor-based study results notably reveal stronger bias

compared to prior literature with similar stimuli but in VR (12◦

when 𝜑𝑠 = 15◦ [Xie et al. 2020; Xing and Saunders 2022]). This

aligns with previous findings of stereo cues on motion perception

[Burlingham and Heeger 2020; Van den Berg and Brenner 1994a,b].

The stronger bias observed in 2D displays underscores the crucial

need to thoroughly measure, predict, and compensate for human

errors in the prevailing computer graphics medium today. This also

motivates the future development of 3D displays. In the following

section, we utilize our study data to establish a perceptual model

predicting human errors in target and scene heading judgment.

ACM Trans. Graph., Vol. 43, No. 6, Article 277. Publication date: December 2024.
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Fig. 6. Full model parameters. The combined model parameters are visualized as 2D surface slices at two different scene speeds, 𝑣HIGH
𝑠

= 3 m/s and

𝑣LOW
𝑠

= 0.5 m/s. The threshold, 𝜇 indicates the critical heading of observed targets, 𝜑𝑡 , at which observers, on average indicate that the target is moving

neither left nor right toward the observer. The slope, 𝜎 indicates the confusability between different target headings (i.e., higher 𝜎 indicates that the ability to

discriminate two target headings are poorer). As reported in Section 3.1, increasing the scene movement speed increases the perceptual bias (meaning lower

threshold) for observers, while decreasing the confusability between targets moving along different heading directions.

3.2 Modeling Target Motion Errors

Model Extrapolation. In Section 3.1, we conducted three separate

polynomial fits to distinct subsets of the study data, each sharing

only the reference condition of {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7}. By

factoring out the parameters of the reference from the fitted models,

we express each model as 𝜇 (𝑣𝑠 ) = 𝜇𝑟𝑘𝑣 (𝑣𝑠 ), 𝜇 (𝜑𝑠 ) = 𝜇𝑟𝑘𝜑 (𝜑𝑠 ), and,

𝜇 (𝑑) = 𝜇𝑟𝑘𝑑 (𝑑), where 𝜇𝑟 represents the psychometric threshold of

the reference; 𝑘𝑣/𝜑/𝑑 denote the three individually fitted polynomial

models with 𝜇𝑟 factored out. That is, these models show how the

threshold changes due to a change in condition from the reference,

meaning, 𝑘𝑣 (𝑣𝑠 = 1 m/s) = 𝑘𝜑 (𝜑𝑠 = 15◦) = 𝑘𝑑 (𝑑 = 0.7) = 1.

To integrate these individual models into a unified holistic one,

we employ a first-order approximation and assume the absence of

cross-condition effects. Then, we express the overarching model as:

𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑) = 𝜇𝑟𝑘𝑣 (𝑣𝑠 )𝑘𝜑 (𝜑𝑠 )𝑘𝑑 (𝑑). (3)

This formulation ensures that the trends of each model are extended

across a broader spectrum of conditions without compromising the

predictive accuracy of the existing conditions. We acknowledge that

closer analysis of cross-condition effects could reveal more intricate

trends in motion perception errors and is an interesting direction

of study, but in the scope of this work, we aimed to determine only

the first-order effect, and explore the interesting applications that

such a model can enable.

In Figure 6, we present a visualization of the predicted psychomet-

ric parameters of the combined model. The extended model features

combinations of prominent features discussed in Section 3.1 such as

the decrease in estimation errors as the target-scene depth disparity,

𝑑 , decreases, and the proportional errors with heading direction, 𝜑𝑠 .

Predicting Scene-Relative Target Heading. Thus far, our psycho-

physical study, and analysis have concentrated onmeasuringmotion

judgment errors under the simple conditionwhere the scene-relative

target’s motion, ®𝑤𝑡 , was constrained along a single axis leftward or

rightward (illustrated by dashed yellow vectors in Figure 2). But how

do these results generalize to conditions where target objects can

move in various directions? In order for our model to be applicable

for any practical scenarios, it is imperative to establish a framework

for extending our perceptual model to accommodate target motions

beyond simple lateral movements.

As shown in Figure 2b and supported by the relation in Equa-

tion (1), the poor estimation of the two motionsÐthe scene motion

(®𝑣𝑠 ) and scene-relative target motion ( ®𝑤𝑡 )Ðare dependent on each

other. This relationship is expressed as ®𝑤𝑡 = ®𝑣𝑡 − ®𝑣𝑠 , where ®𝑣𝑡 rep-

resents the target’s observer-relative velocity. Hence, an observer’s

misjudgment of scene-relative target movement corresponds to an

opposite misjudgment of scene movement:

®𝑤 ′
𝑡 = ®𝑣𝑡 − ®𝑣 ′𝑠 . (4)

In our study, the psychophysical thresholds indicate the critical

value ®𝑣𝑡 , with a corresponding heading of 𝜑𝑡 = 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑), at which

®𝑤 ′
𝑡 = 0. By incorporating these results into Equation (4), we conclude

that our model yields the perceived heading of scene motion, which

our study has shown to deviate from the actual heading:

𝜑 ′𝑠 = 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑) . (5)

Ultimately, by combining Equations (4) and (5), we derive an

expression for estimating the perceived scene-relative target motion:

®𝑤 ′
𝑡 = ®𝑣𝑡 − ®𝑣 ′𝑠 = ( ®𝑤𝑡 + ®𝑣𝑠 ) − ®𝑣 ′𝑠 = ®𝑤𝑡 + ®𝑣𝑠 − (𝑅𝜇𝑧)𝑣𝑠 (6)

where𝑅𝜇𝑧 represents the forward unit vector (see Figure 2a) laterally

rotated by 𝜇 (𝑣𝑠 , 𝜑𝑠 , 𝑑). We visualize this vector sum in Figure 8a.

4 MODEL VALIDATION

4.1 Measuring Model Robustness

To ensure model robustness, we conduct a numerical validation by

fitting the model to half of the experimental data, and measure its

goodness-of-fit to the other half of the data unseen by the fitted
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,

(a) SPORTS: Control

Disparity,

(b) SPORTS: Camera Pose (c) SPORTS: Camera Pose + Scene Content

(d) FLIGHT: Control (e) FLIGHT: Static Scene (f) FLIGHT: Dynamic Scene

Fig. 7. Application case study protocols and scenes. (a)/(d) shows the original animations of the target and camera simultaneously moving in a 3D scene. Both

the model prediction and our study results indicate that the animation design induces significant perceptual errors in users’ perceptual error of target motion.

To reduce such errors, our model enables predictive suggestions for design optimizations, such as adjusting camera poses (b), as well as adding static (c)/(e)

and dynamic (f) background geometries.

model. Specifically, each of the 𝑛 = 38 subjects’ data is randomly

partitioned into either a model fitting or evaluation group. We then

assess the model’s prediction accuracy compared to the observed

data using the 𝑅2 coefficient for each study condition. Due to the

arbitrary nature of the subject partitioning operation, we repeated

this procedure 𝑁 = 20 times, and observed that the lowest score

recorded was .61, while the mean score across all conditions and

repeats to be .95, compared to the full model’s self-fitting score of

.98, indicating acceptable fits [Ozili 2023].

4.2 Generalizability Over Population

We validate whether the psychometric curves fitted from the sample

population in Section 3.1 can generalize to unseen subjects. To this

aim, we conducted a smaller-scale user study featuring only the

reference condition from our main study in Section 3.1 on a new

subject group (𝑛 = 23, ages 22 − 52, 11 males). This study replicated

the study protocol, stimuli, and crowdsourcing-based recruitment

methods of Section 3.1.

Conditions. Our goal in this study was to investigate the vari-

ability of motion judgment errors across different subjects and to

use the results to validate our main study in Section 3.1. To keep

the study duration and cost feasible, we only studied the reference

condition from the main study (i.e., {𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑 = .7})

and increased the number of repetitions for each trial (10 repeats)

to sufficiently fit corresponding psychometric curves for individual

subjects. Step sizes between target heading levels,𝜑𝑡 , were decreased

to 4.2◦ to ensure higher precision measurements. Overall, the study

consisted of 80 measurement trials, 20 filler trials featuring random

conditions to prevent categorical judgments [Xing and Saunders

2022], and 48 screening trials (see Section 3.1 for details) for a total

of 148 trials completed in 15 min by the median subject.

Results and discussion. We fit individual psychometric curves to

each of the subjects’ aggregated study responses, and observed a

mean threshold, 𝜇avg = 4.6◦ ± 1.1◦ Standard Error Mean (SEM) and

mean slope, 𝜎avg = 6.2◦ ± 1.4◦ SEM for the condition identical to

the reference of our main study. A single sample 𝑡-test indicates

that the mean threshold and slope from the main study 𝜇 = 6.2◦

and 𝜎 = 5.7◦ is not significantly different from the distribution of

thresholds and slopes in the evaluation study, 𝑡 (22) = −1.4, 𝑝 = .18

and 𝑡 (22) = .35, 𝑝 = .73, respectively.

The statistical analysis demonstrates that the psychometric thresh-

old found for the reference condition in our main study lies within

acceptable limits of thresholds of out-of-population individuals.

While the approach for establishing representative psychometric

curve parameters utilized in this evaluation study are more robust

due to the larger volume of samples we collect per-subject, we note

that conducting a main study of similar scale in terms of different

conditions studied becomes unfeasible in practice due to prohibi-

tively high study durations and costs.

5 APPLICATION CASE STUDY: ANIMATION DESIGN
GUIDANCE

Scene dynamics, including camera and object motion control [Hsu

et al. 2013], as well as scene content, such as depth [Kellnhofer et al.

2013], are crucial factors in animation design [Jiang et al. 2021; Lino

and Christie 2015], video editing [Kang and Cho 2019], and game

development [Caroux et al. 2013]. Traditionally, the design of these

factors has been implicitly driven by aesthetics or storytelling.

We investigate observers’ perceptual errors in the target dynamics

with two 3D animations. Subsequently, we propose model-guided

design alterations, including optimizing camera pose, adjusting

the placement of scene objects, and introducing subtle motions to

them, to mitigate the predicted perceptual errors. We evaluate the

effectiveness of these scene design improvements by conducting

multiple-choice user studies.
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Fig. 8. Predicting and compensating target motion estimation in animation de-

sign. (a) Similar to the illustration in Figure 2a, an observer may erroneously

perceive the target motion ®𝑤𝑡 as ®𝑤′
𝑡
by judging from ®𝑣𝑡 on screen. As shown

in Figure 7, we leverage our model to alter the scene designs in various ways

to reduce the error. (b) We take the łDynamic Scenež condition in FLIGHT

(Figure 7f) as example. The model-guided cloud motion alters observers’

perception so that ®𝑤′
𝑡
becomes closer to ®𝑤𝑡 (as evidenced in Figure 9).

Participants and procedure. We conducted two user studies via

crowdsourcing and recruited 𝑛 = 22 subjects (ages 20 − 64, 10 male)

for each. Unlike the two-alternative forced choice (left vs. right judg-

ment) tasks in Section 3.1, subjects in this study directly indicated

perceived scene-relative directions of targetmotion. As shown in Fig-

ures 4c and 8, they chose from one of seven options, each represent-

ing a scene-relative target heading of 𝜓𝑡 ∈ {±30◦,±20◦,±10◦, 0◦}.

After viewing a 2 s video featuring a moving target within a moving

scene, subjects referred a top-down view presented at the end of

each trial and pressed a button to indicate their choice.

Stimuli. Two realistic scenes, along with corresponding target

objects, were used to simulate common gaming and simulation

animations: (1) sports gaming with golf (SPORTS), and (2) flight

simulation (FLIGHT), as shown in Figure 7. In both scenes, as

depicted in Figure 4b, the scene moves towards the observer at

a heading of 𝜑𝑠 = 25◦ with a speed of 𝑣𝑠 = 1 m/s and .5 m/s for

SPORTS and FLIGHT, respectively (the scene and target sizes were

re-scaled to align with the scaling of our model).

Each scene features a target object: a golf ball, and a hot-air

balloon. At the start of each trial, the target object appears at a

random location within 10◦ from the fixation point, and a distance

of 12−14 m and 6−7 m from the observer for each scene. The target

moves towards the observer along the 3rd trajectory in Figure 8 at

a heading of 𝜑𝑡 = 10◦ and a speed of 𝑣𝑡 = 2.8 × 𝑣𝑠 . The observer-

relative motion of the target is equivalent to a scene-relative motion

along the 6th trajectory in Figure 8, or𝜓𝑡 = −20◦.

Each subject completed 10 repetitions of these trials as well as

5 more filler trials with random target object headings to prevent

categorical responses. We provided mirrored motions for each trial

to ensure left-right balance for a total of 30 trials per study condi-

tion. Similar to our psychophysical study in Section 3.1, subjects

also completed a pre-study training session with a straight-ahead

heading 𝜑𝑠 = 0◦, and targets moving along 1st, or 7th trajectory (i.e.,

𝜓𝑡 ∈ ±30◦). The median completion time was 15 min.

Conditions. For each scene, we prepared two content re-design

“treatmentž conditions without changing the original cameramotion

trajectory, when compared to the control conditions shown in Fig-

ures 7a and 7d. As evidenced in Figure 5c, decreasing target-scene

depth disparity, 𝑑 , reduces perceptual errors. Thus, to address this

issue, in SPORTS, the first re-design elevates the camera height, and

lowers the viewing angle for a more “birds-eyež view (Figure 7b).

As a more aggressive re-design, we also added scene elements be-

hind the target golf ball to further decrease depth disparity (Fig-

ure 7c). Across these three scenes, the average scene-target depth

disparities were 𝑑 = .1/.6/.7, respectively. Using our model and

target heading prediction framework of Section 3.2, we determined

𝜓 ′
𝑡 = 16◦/10◦/−5◦ for the three conditions respectively.

Similarly, for FLIGHT, we first added static cloud objects into

the scene to decrease the depth disparity from 𝑑 = .8 to 𝑑 = .4 as

shown in Figure 7e. For the second treatment, we took a different

approach by attempting to simulate a different scene heading by

adding a horizontal drift velocity, 𝑣 = .25 m/s, to the clouds relative

to the rest of the scene to reinforce the lateral direction of optical

flow and induce a higher perceived scene heading angle of 𝜑𝑠 = 37◦

(see Figure 8b). In effect, our model predicts that the perceived

scene-relative target heading for the target hot-air balloon was

𝜓 ′
𝑡 = 22◦/−1◦/−12◦, respectively.

Analysis and results. For both studies, we summarize the mean

response of each subject and each condition by aggregating across

the 20 recorded trials. Figure 9 compares the acquired distributions

of target headings 𝜓 ′
𝑡 with the model-prediction. Across subjects,

in SPORTS, the measured mean and SEM target headings were

𝜓 ′
𝑡 = 9.1◦ ± .91◦, 4.8◦ ± .60◦ and −5.5◦ ± 1.2◦ for the control, camera

pose and additional scene content conditions respectively, while

in FLIGHT, the measurements were 𝜓 ′
𝑡 = 6.5◦ ± .71◦, −1.8◦ ±

Control

Camera Pose

Camera Pose +
Scene Content

Control

Camera Pose

Camera Pose +
Scene Content

3 4 5 6 71 2

30° 20° 10° 0° -10° -20° -30°
Scene-Relative Target Heading, ��
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Static Scene

Dynamic Scene
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Fig. 9. Results of the application case study. The x-axis shows the scene-

relative target heading angles corresponding to individual options (1-7)

provided in the study. The red and yellow/green points represent the dis-

tribution of per-subject aggregated mean response data in control and our

model-suggested re-designed animations, respectively. The black points rep-

resent the corresponding response distribution simulated from our model

prediction. The points (𝜓 ′
𝑡
) are vertically jittered for plot visibility.
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1.5◦ and −7.5◦ ± 1.8◦ for the control, static scene and dynamic

scene conditions, respectively. Across all conditions, the ground-

truth scene-relative target heading was 𝜓𝑡 = −20◦. A repeated

measured ANOVA shows that the conditions within each study

had a significant effect on the mean responses for both SPORTS

(𝐹2,42 = 94.0, 𝑝 < .01) and FLIGHT (𝐹2,42 = 65.6, 𝑝 < .01) scenes.

Discussion. As shown by the ANOVA results, the model-guided

content re-design significantly improved the accuracy of target

heading judgments for the subjects. Our model was able to predict

the overall trend of heading judgment errors, although the exact

numerical predictions were slightly inaccurate. We attribute this per-

formance regression to the introduction of higher-order cognitive

cues in the more realistic stimuli and discuss its implications further

in Section 6. Nevertheless, our model is still capable of providing

a first-order approximation of the relationship between observer-

relative scene and target velocities (®𝑣𝑠 and ®𝑣𝑡 ) and the scene-relative

target velocity ( ®𝑤𝑡 ). In real-world applications, we can leverage

these predictions to provide guidance and feedback on the overall

estimation difficulty, and anticipated motion judgment errors users

are likely to make when observing dynamic imagery.

6 LIMITATIONS AND FUTURE WORK

Additional cues. Beyond image space, stereo [Burlingham and

Heeger 2020] and vestibular [DeAngelis and Angelaki 2012] cues

from emerging 3D displays may also alter motion perception, to-

gether with semantic and cognitive influences, including human

body pose [Blake and Shiffrar 2007], visual path information [Li et al.

2009], and object shadows [Kersten et al. 1997]. Meanwhile, many of

these phenomena rely on higher-order cognitive cues beyond low-

level visual operators. For example, understanding the relationship

between the motion of objects and the shadows they cast requires

spatial reasoning and is a non-intrinsic, learned skill in humans

[Van de Walle et al. 1998]. In this work, we chose to first establish

a baseline for human perception at an abstraction level where all

high-level cues were absent, and the only source of information

was the optical flow derived from motion within a 3D environment.

After confirming significant perceptual errors under these abstract

baseline conditions, we then constructed a more realistic synthetic

scene in Section 5 to determine whether any of the baseline esti-

mation errors persist and to assess if our model can still mitigate

these errors within the scope of our chosen parameterization, de-

spite the introduction of high-level factors. We believe that these

experiments successfully demonstrate the effective application of

optimizing animation design pipelines as a first-order measurement

and mitigation of human perceptual errors.

Cross-conditions. In Section 3, we characterize the scene dynamics

with self movement (direction and speed) and content depths (with

regard to the object). Exploring additional combinations of scene

and object dynamics, such as rotations and vertical movements,

leads to a prohibitively large number of trials. This poses challenges

due to participants’ limited attentive capacity for maintaining data

accuracy, as well as the associated financial costs or running long

studies. Therefore, this research focuses on separately measuring the

effects from individual dimensions. To study the cross-conditions

while maintaining feasibility, we plan to first analyze a primary

effect via a pilot study similar to [In 2017], and extend the work

towards a dimension-reduced study.

Motion degrees of freedom. We study perceptual errors for hor-

izontal motion patterns along transverse (horizontal) planesÐthe

more common human motion [Hummel et al. 2016]. However, both

object and scene motions together form a complex 12 degrees of

freedom (DoF) problem (6 DoF each for the self and the object)

across all planes, including the coronal and sagittal. In such case,

a rotating observer or object will elicit a moving FOE [Danz et al.

2020]. Therefore, introducing a temporal movement factor to the

FOE, a.k.a., its locus, could be a key to modeling arbitrary motions

[Rangarajan and Shah 1992]. Additionally, camera motion analysis

using a large-scale egocentric motion dataset (e.g., Ego4D [Grauman

et al. 2022]) could establish a coordinate system tailored for the most

prevalent human motion patterns.

Perceptual attention and confidence. In highly complex scenarios,

various objects may move in different directions. The confound-

ing optical flow may further compromise observers’ perception in

understanding the motion [Warren et al. 1988; Warren Jr and Han-

non 1988]. Moreover, because of humans’ selective attention, the

movement of multiple objects can also interfere with the visual sen-

sitivity towards a specific target [Min and Corso 2019]. Our current

model assumes full attention to a single target. In the future, we

plan to explore the influence from optical flow entropy toward a

more content-aware probabilistic model.

7 CONCLUSION

In this study, we investigate a universal yet under-investigated factor

in computer graphics: human perception of how displayed objects

move in dynamic environments. Our data reveals a consistent and

systematic bias in how object motions are interpreted, influenced by

scene dynamics and content depth. Additionally, we demonstrated

how the findings provide quantifiable guidance for animation and

game design, helping to reduce users’ perceptual errors. We hope

this work will inspire future research in the community, towards

developing predictive models that compensate for perceptual limi-

tations and enhance human performance with computer graphics.
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A UNFILTERED PSYCHOPHYSICAL DATA ANALYSIS

In this work, we rejected a significant number of subjects via our task understanding filter, as described in Section 3.1, to ensure high quality

data acquired from crowdsourced study participants. Here, we present the psychometric curve fitting results for the unfiltered data to serve as

a comparison to the results included in the main manuscript. In Figure 10, we replicated Figure 5 to serve as a direct comparison between the

filtered and unfiltered data. The psychometric threshold for the reference condition was 𝜇𝑟 = 4.2◦ when compared to 𝜇𝑟 = 6.2◦ as reported for

the unfiltered data. The Discussion about the trends and patterns of the psychophysical study results in Section 3.1 are largely unchanged for

the unfiltered data, albeit with a much stronger bias effect.
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Fig. 10. Unfiltered Study Data Analysis. Results of processing the data without applying the task understanding filter are visualized for comparison with

Figure 5. See the caption for Figure 5 for details on the visualization designs.

B PSYCHOMETRIC AND POLYNOMIAL FITTING

Below, we list the parameters for all the psychometric curves fitted using the data collected from our psychophysical study of Section 3.1:

Table 1. Psychometric parameters for different scene speeds, headings, and depth ratios.

Attribute Value Threshold, 𝜇 (◦) Slope, 𝜎 (◦)

𝑣𝑠 (m/s)

0.5 6.5 8.8

1 6.2 5.7

3 4.7 4.4

𝜑𝑠 (degrees)

5 2.1 5.7

15 6.2 5.7

25 9.1 4.4

𝑑

0.05 10.8 7.6

0.3 9.2 6.2

0.7 6.2 5.7

0.9 1.6 5.2

These psychometric parameters were then regressed to fit polynomial curves with fitted parameters 𝜇𝑟 = 6.2◦ and 𝜎𝑟 = 5.7◦.:

𝜇 (𝑣𝑠 , 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜇𝑟 × (.931 + .077𝑣𝑠 + .006𝑣2𝑠 ),

𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠 , 𝑑 = .30) = 𝜇𝑟 × (.045 + .054𝜑𝑠 + .001𝜑2𝑠 ),

𝜇 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜇𝑟 × (.531 − .171𝑑 + 1.390𝑑2),

𝜎 (𝑣𝑠 , 𝜑𝑠 = 15◦, 𝑑 = .30) = 𝜎𝑟 × (1.486 − .302𝑣𝑠 ),

𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠 , 𝑑 = .30) = 𝜎𝑟 × (1.093 − .011𝜑𝑠 ), and,

𝜎 (𝑣𝑠 = 1 m/s, 𝜑𝑠 = 15◦, 𝑑) = 𝜎𝑟 × (1.308 − .459𝑑) .

(7)
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